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Abstract
Sequential decision-making problems with multiple ob-

jectives occur often in practice. In such settings, the util-
ity of a policy depends on how the user values different
trade-offs between the objectives. Such valuations can be
expressed by a so-called scalarisation function. However,
the exact scalarisation function can be unknown when the
agents should learn or plan. Therefore, instead of a sin-
gle solution, the agents aim to produce a solution set that
contains an optimal solution for all possible scalarisations.
Because it is often not possible to produce an exact solution
set, many algorithms have been proposed that produce ap-
proximate solution sets instead. We argue that when com-
paring these algorithms we should do so on the basis of
user utility, and on a wide range of problems. In practice
however, comparison of the quality of these algorithms have
typically been done with only a few limited benchmarks and
metrics that do not directly express the utility for the user.
In this paper, we propose two metrics that express either the
expected utility, or the maximal utility loss with respect to
the optimal solution set. Furthermore, we propose a gen-
eralised benchmark in order to compare algorithms more
reliably.

1. Introduction
In sequential decision problems, agents aim to maximize

their utility. When this utility can be expressed as a single
(discounted) sum of scalar rewards, the problem can often
be modelled as a Markov decision process (MDP). MDPs
have been studied extensively and many solution methods,
as well as benchmarks to test these methods1, have been
proposed.

A complicating factor in many real-world decision prob-
lems however, is the existence of multiple possibly conflict-
ing objectives, e.g., maximising the economic benefits of
timber harvesting while minimising ecological damage in a

1E.g., http://www.rl-competition.org/ and [18]

forest management scenario [2]. In such cases, the rewards
are vectors rather than scalars. Sometimes, it might be pos-
sible to scalarise these reward vectors using a pre-specified
scalarisation function that expresses the utility of different
trade-offs between the objectives, and reduce the problem
to a single-objective problem. However, when the parame-
ters of the scalarisation function are not known in advance,
this approach does not apply. In such cases we need a model
that expresses the multiple objectives explicitly, i.e., a multi-
objective MDP (MOMDP) [10].

In MOMDPs, the agent’s goal is to find a solution set
that contains an optimal policy for each function in a given
family of scalarisation functions. However, when the model
is unknown to the agent, or there is not enough time or
memory, it is not possible to produce an exact solution set.
In such cases, different methods typically produce different
approximate solution sets. The quality of such approxima-
tions should be assessed w.r.t. the expected utility [10].

In single-objective methods, it is straightforward to com-
pare the quality of the policies found by different algo-
rithms. In particular, the expected (discounted) sum of re-
wards, i.e., the value, of each policy is a scalar, and the
policy with the highest value is best. However, it is not so
straightforward to evaluate the relative quality of different
approximate solution sets because we do not know the pa-
rameters of the scalarisation function that ultimately deter-
mine user utility. This makes quality assessment and com-
parison of MOMDP algorithms a challenging task.

Previous research on quality assessment for MOMDP
methods follows an axiomatic approach. It assumes ax-
iomatically that the Pareto front is the optimal solution set.
Following this assumption, metrics (such as the widely used
hypervolume metric) are proposed to express how well a
solution set approximates the Pareto front. The maximal
value of such a metric given a MOMDP can only be attained
by identifying the Pareto front. An important limitation of
these metrics however, is that they do not take into account
the loss of utility for the user due to approximation of the

1



solution set.
Another important issue in the quality assessment of

MOMDP algorithms is the limited choice in known bench-
marks [15]. Often, algorithms are evaluated on a small
amount of benchmarks, or specific (real-world inspired)
problems which authors are interested in solving. While
solving specific problems of course presents its own us-
ability, it obfuscates the comparison between different algo-
rithms. Furthermore, when algorithms are evaluated using
the few available benchmarks, there is the risk of method
overfitting [18], i.e., algorithms might perform really well
on the specific available benchmarks, but that does not im-
ply a good performance on different problems with widely
different problem properties.

This paper contributes to quality assessment of MOMDP
methods in two meaningful ways. Firstly, using the utility-
based approach, we propose two methods to assess the
quality of an approximate solution. We advocate the ε-
metric [22] and show mathematically how this metric can
be applied to bound the maximal loss in ultimate utility
of the user. We propose the expected utility metric which
can be used when a prior over scalarisation functions is
known. Secondly, we propose a benchmark that we made
publicly available. In order to ensure the quality of this
benchmark, we outline criteria for a generalised benchmark
for MOMDPs, and discuss the importance of preventing
method overfitting through using a generalised benchmark.
We illustrate how algorithms can be thoroughly compared
using the proposed benchmark by comparing two state-of-
the-art algorithms.

2. Background
Before we discuss quality assessment of MORL algo-

rithms in-depth, we first provide the definitions and nota-
tions we will use, as well as an overview of previous work
in quality assessment.

2.1. MOMDPs

A Multi-Objective Markov Decision Process (MOMDP)
[10] is a tuple < S,A, T,R, µ, γ > where
• S is a finite set of states,
• A is a finite set of actions,
• T : S × A× S → [0, 1] is a transition function speci-

fying, for each state, action, and next state, the proba-
bility of that next state occuring,
• R : S × A × S → Rn, n ∈ N, is a reward func-

tion, specifying, for each state, action, and next state,
the expected immediate reward vector of length n (one
element for each objective),
• µ : S → [0, 1] is a probability distribution over initial

states,
• γ ∈ [0, 1) is a discount factor specifying the relative

importance of immediate rewards.

In the context of a MOMDP m, we denote the set of all
possible (and allowed) policies π with Πm. The value of
a policy π is the expected cumulative discounted sum of
reward vectors

Vπ = E

[ ∞∑
k=0

γkrk+1|π

]
,

where rt is the vector of the rewards received at time t. Un-
like in single-objective MDPs, there is typically not a single
policy that maximises the value in all objectives, i.e., there
is not a single optimal policy. In such cases, what the best
policy is depends on the preferences of end user(s) regard-
ing the trade-offs between the different objectives. These
preferences can be expressed in terms of a scalarisation
function, also known as a utility function, f , which col-
lapses the multi-objective value of a policy, Vπ , to a scalar
value according to the preferences of the user [10]. This
scalarised value is given by

V πw = f(Vπ,w)

where w is a weight vector parameterising f . Following
[10], we assume that when the end user selects a policy for
execution scalarisation always takes places, either explic-
itly (by applying the scalarisation function) or implicitly,
embedded in the thought-process of the end user.

The utility-based approach [10] highlights that agents
aim to maximise the utility of the user, as expressed by
the scalarisation function. Specifically, the agent should
maximise f(Vπ,w) where w is unknown during planning.
Therefore the agent has to provide a solution set contain-
ing an optimal policy for each possible w. Given a solution
set, the user can then pick the policy that maximises the
scalarisation function he decides upon. Unlike in the ax-
iomatic approach, information about the scalarisation func-
tion, along with which policies are allowed, is thus used to
derive which policies should be in the solution set. Fur-
thermore, as we argue in this paper, the information about
the scalarisation function can be used to bound the loss of
utility due to approximation of this solution set.

The most common assumptions regarding the scalarisa-
tion function are that it is a) monotonically increasing in
all objectives, or b) that it is also known to be linear, i.e.,
a weighted sum over the objectives. For MOMDPs where
the scalarisation function is known to be monotonically in-
creasing (but not necessarily linear) and only deterministic
policies are allowed, the Pareto front (PF) is the optimal
solution set [10]:

PF (Πm) = {π ∈ Πm | ¬∃π′ ∈ Πm : Vπ′
�P Vπ}

where �P is the Pareto dominance relation,

Vπ �P Vπ′
⇔ (∀i : V πi ≥ V π

′

i ) ∧ (∃i : V πi > V π
′

i ).
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In words, the Pareto front is the set of all policies that are
not Pareto-dominated by any other policy for m. However,
when either f is monotonically increasing and stochastic
policies are allowed, or f is linear, the optimal solution is
the convex hull (CH):

CH(Πm) = {π ∈ Πm | ∃w ∀π′ ∈ Πm : w·Vπ ≥ w·Vπ′
}.

I.e., the convex hull is the set of all policies that maximise
the weighted sum over objectives for some weight vector
w. Other possible assumptions about f lead to different
solution sets, e.g., a sense of fairness may lead to a Lorenz
optimal set [9].

The utility-based approach stands in contrast to the ax-
iomatic approach where the main assumption is that the PF
is always the optimal solution set; any information about
the user and his preferences should be incorporated.

2.2. Quality assessment

Quality metrics based on the axiomatic approach assess
the quality of an approximate solution set by other crite-
ria than user utility. Instead, these metrics aim to opti-
mise for certain desirable characteristics. The most popu-
lar three features are [21]: uniformity, i.e., how uniformly
the solutions are distributed (e.g., the Schott spacing metric
[13]), how well the solutions are spread over the solution
space (e.g., the maximum spread metric [21]), and conver-
gence, i.e., how closely they approximate the Pareto front
(e.g., the ε-indicator [22]). The popular hypervolume met-
ric [22] combines all of these criteria and is able to reflect an
improvement in any of the three mentioned characteristics.
Therefore, the hypervolume is sometimes considered most
suitable for MOMDP quality assessment [15]. However, the
value of the hypervolume metric, just as some other quality
metrics, strongy depends on the rather arbitrary choice of
a reference point [15] and it is unclear what the values of
such metrics that are used in the axiomatic approach mean.
E.g., are two approximate sets with equal values for a cer-
tain metric actually equally good, and how should approxi-
mate solution sets be ranked if they have different rankings
according to different metrics? This problem arises in the
axiomatic approach because the ability of an agent to max-
imise utility — which we argue is ultimately the goal in
solving any decision problem — is not directly assessed.
However, this does not mean that contributions to quality
assessment that have been done from the axiomatic point of
view cannot be used. In fact, we will show that for the ε-
indicator, we can bound the loss of utility in a utility-based
point of view for certain classes of scalarisation functions.

Another important factor in the quality assessment of
MOMDP algorithms is which problems to test the algo-
rithms on. A key contribution in this respect was made by
Vamplew et al. [15], who address the lack of overlap be-
tween test problems used by different authors and motivate

the necessity of a standard benchmark for MOMDP algo-
rithms. They establish a range of benchmark characteristics
which are required to fully evaluate the performance of dif-
ferent MORL algorithms (see also Section 4), and propose a
set of four specific test problems. However, they not address
the risk of method overfitting.

Method overfitting [4] occurs when an algorithm over-
fits on the problem, i.e., a specific (type of) MOMDP. In
[18], Whiteson et al. discuss the importance of counter-
ing method overfitting when evaluating RL algorithms in
single-objective MDPs, and propose using generalisation,
i.e., using multiple instances of the same class instead of a
single MDP. Without generalisation, benchmark scores can
be misleading in that algorithms which beat certain bench-
mark scores may only be capable of solving the given MDP,
rather than solving (a large class of) MDPs in general.

3. Evaluation of candidate solution sets
When assessing the quality of an approximate solution

set to an MOMDP, we follow the utility-based approach,
i.e., we aim to assess the ability of an agent to maximise
user utility.

We propose two ways to assess this ability directly. First,
we propose the expected utility metric (EUM), which cal-
culates the expected utility given a prior over scalarisation
functions. Second, when such a prior is not available, we
advocate the use of the ε-metric, and prove that for an
important class of scalarisation functions, i.e., Lipschitz-
continuous monotonically increasing scalarisation func-
tions, we can bound the maximal utility loss (MUL).

3.1. Expected utility

The expected utility metric (EUM) indicates how much
utility an agent can expect to gain for the user on average,
given the solution set it returns and a family of scalarisation
functions. This metric is related to the R Indicator Family
[22] which compares two solution sets directly based on a
family of scalarisation functions. Our metric however, eval-
uates one solution set at a time. The expected utility of a
solution set S for a given family of scalarisation functions
V πw = f(Vπ,w) and a probability distribution P (w) over
weights w is given by the expected average utility the opti-
mal policy from the solution set gains,

EUM(S, f, P ) = E[ max
V π∈S

f(Vπ,w)].

Sometimes it is possible to calculate this expectation exactly
for a given solution set. When this is not feasible, sampling
methods, i.e., drawing a set of K samples w from P (w),
can be used to approximate this expected value,

EUM(S, f, P ) ' 1

K

K∑
k=1

max
V π∈S

f(Vπ,wk).
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This metric is particularly useful when it is important that
the agent can perform well across a family of scalarisation
functions, for example in a case when several policies from
the solution set will be used over time. The standard devia-
tion can give additional information about how this perfor-
mance fluctuates over scalarisation functions. It is crucial
however that the family of scalarisation functions and its
probability distribution, or a good prior are known.

3.2. Utility loss of ε-approximate Pareto fronts

When no prior over w can be defined, we cannot com-
pute EUM. For this case, we propose the maximal utility
loss (MUL) metric that gives a sense of the utility that is
lost due to approximation, given the available information
about f .

Definition 1. For a given solution set S and a family of
scalarisation functions f(Vπ,w) we define the maximum
utility loss MUL(S, f) as the maximum scalarised value
that is lost due to approximation, i.e.,

∀Vπ ∈ P ∃Vπ′
∈ S :

f(Vπ,w) ≤ f(Vπ′
,w) +MUL(S, f) .

For an ε-version of convex hulls and corresponding
MUL see, e.g., [11]. Here, we show that for an ε-
approximate PF, we can bound MUL for the family of
Lipschitz-continuous scalarisation functions, i.e., functions
f for which there is a Lipschitz-constant K ≥ 0 s.t.

|f(x)− f(y)|2 ≤ K|x− y|2 .

Lipschitz-continuous scalarisation functions are widely
used in RL [3, 5, 7].

An ε-approximate Pareto front S [22] is a solution set
that approximates the Pareto front P , and there are two ver-
sions of the ε-indicator which express how good this ap-
proximation is. The additive ε-indicator is given by
Iε+ = inf

ε∈R
{∀Vπ ∈ P ∃Vπ′

∈ S :

∀i = 1, . . . , n : V πi ≤ V π
′

i + ε}

and the multiplicative ε-indicator is given by
Iε+ = inf

ε∈R
{∀Vπ ∈ P ∃Vπ′

∈ S :

∀i = 1, . . . , n : V πi ≤ V π
′

i (1 + ε)}

where n is the number of objectives in the MOMDP. We
now use the ε-indicator to bound MUL for monotonically
increasing Lipschitz-continuous scalarisation functions.

Theorem 1. Let f(Vπ,w) be a monotonically increas-
ing scalarisation function that is Lipschitz-continuous for
all weights w with Lipschitz-constant Lw. Let further
L = max

w
Lw. Then

(a) if a solution set S is an ε-approximate Pareto front in
the sense of the additive ε-indicator,

MUL(S, f) = ε
√
nL.

(b) If a solution set S is an ε-approximate Pareto front in
the sense of the multiplicative ε-indicator, then

MUL(S, f) =
ε

1 + ε

√
nL max

i=1,...,n,

V π∈P

|V πi |.

Proof. Let w ∈ Rn+ be an arbitrary but fixed weight vec-
tor and denote f(·,w) = fw(·). Further let Vπ0 ∈ P be
a policy value from the true Pareto front P for which fw
is maximal across all policies (exists in P because fw is
monotonically increasing),

Vπ0 ∈ {Vπ ∈ P|∀π′ ∈ Πm : fw(Vπ) ≥ fw(Vπ′
)} (1)

and let Vπε ∈ S be a policy value from the solution set S
for which fw is maximal across S ,

Vπε ∈ {Vπ ∈ S|∀Vπ′
∈ S : fw(Vπ) ≥ fw(Vπ′

)}. (2)

(a) Let Vπ0ε ∈ S be a policy value that additively ε-
dominates the above defined Vπ0 ∈ P ,

Vπ0ε ∈ {Vπ ∈ S|∀i = 1, . . . , n : V π0 ≤ V πi + ε} . (3)

Then from (3) and with ε := (ε, . . . , ε) ∈ Rn follows

V π0
i ≤ V π0ε

i + ε⇔ V π0
i − ε ≤ V

π0ε
i

(∗)⇒ fw(Vπ0 − ε) ≤ fw(Vπ0ε)

(2)⇒ fw(Vπ0 − ε) ≤ fw(Vπε) (4)

and further,

fw(Vπ0)− fw(Vπε)

(4)

≤ fw(Vπ0)− fw(Vπ0 − ε)

(∗)
= |f(Vπ0)− fw(Vπ0 − ε)|2
(∗∗)
≤ Lw|Vπ0 − (Vπ0 − ε)|2

= Lw|ε|2
≤ ε
√
nL

(b) Let Vπ0ε ∈ S be a policy value that multiplicatively
ε-dominates Vπ0 ,

Vπ0ε ∈ {V π ∈ S|∀i = 1, . . . , n : V π0
i ≤ (1+ε)V πi }. (5)

Then
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fw(Vπ0)− fw(Vπε)

(2)

≤ fw(Vπ0)− fw(Vπ0ε)

(5,∗)
≤ fw(Vπ0)− fw

(
1

(1 + ε)
Vπ0

)
(∗)
= |fw(Vπ0)− fw

(
1

(1 + ε)
Vπ0

)
|2

(∗∗)
≤ Lw|Vπ0 − 1

(1 + ε)
Vπ0 |2

= Lw|
ε

1 + ε
Vπ0 |2

= Lw
ε

1 + ε
|Vπ0 |2

≤ ε

1 + ε

√
nL max

i=1,...,n,

V π∈P

|V πi |

(*) because f is monotonically increasing
(**) because f is Lipschitz-continuous

We showed how the MUL metric can be used to esti-
mate an upper bound on the possible loss of utility for any
Lipschitz-continuous f . We see from the factor

√
n that this

loss depends on the number of objectives of the MOMDP.
The higher the dimensions, the higher the MUL for the
same ε. For larger number of dimensions, it will become in-
creasingly harder to keep the maximal possible loss of util-
ity small, however, this will be the case across all planning
and learning algorithms.

The MUL metric overcomes the drawback of the ex-
pected reward metric, as it does not require the knowledge
of the distribution over weights.

In practice, the true Pareto front is often infeasible to
compute, which makes calculating ε exactly infeasible too.
In this case, we can work with a good reference set instead
of the PF, and compare algorithms on this set. When com-
paring two algorithms, the union of the final solution set
of both algorithms can be used as a reference set (how-
ever, when comparing a new algorithm these reference sets
change precluding their reuse).

Some multi-objective algorithms exist that guarantee
producing an ε-approximate Pareto front without ever cal-
culating the true Pareto front [8]. In this case, the MUL is
known without needing a reference set if we make use of
the fact that max

i=1,...,n,

V π∈P

|V πi | ≤ max
i=1,...,n,

V π∈S

|(1 + ε)V πi |.

4. Criteria for a good benchmark
Having defined metrics with which to compare different

approximate solution sets, we can now compare the out-
put of different MOMDP algorithms. However, in order to
compare the performance of these algorithms, we require
test problems that provide a deeper insight into how the al-
gorithms behave as a function of different problem features.

Vamplew et al. [15] propose the following list of features
that a benchmark should contain:

a. two or more objectives
b. stochasticity in transition dynamics and/or rewards
c. continuous state or action spaces
d. state dimensionality high enough to require the use of

function approximation
e. partially-observable states
f. a mixture of episodic and continuing tasks
g. different Pareto front features such as concavities and

discontinuities
In essence, these features demand a benchmark (suite) to
be able to test performance on a large variety of problems,
suitable for many different types of algorithms.

In addition to the above-mentioned features, we stress
the importance of generalisation. Generalisation prevents
algorithms from overfitting to the problem, leading to a
more reliable evaluation of the performance [18]. To pre-
vent method overfitting, a benchmark’s environment should
be able to keep the difficulty parameters (Section 5.2) of the
problem the same, while shuffling the exact way these prop-
erties are implemented. E.g., in the benchmark we propose
in the next section, these are different resources. While the
number of resources influences the difficulty of the prob-
lem, the exact position of the resources can be determined
randomly, without changing the difficulty. Shuffling these
positions randomly causes the agent to be presented with
different MOMDPs. While testing algorithms on problems
with given difficulty parameters, one should always test sev-
eral instances of such a generalised benchmark. Further-
more, because a generalised benchmark is parameterised, it
is possible to test how well different algorithms perform as
a function of these parameters, leading to a deeper insight
into the relative performance of the algorithms.

5. The Collecting Traveller benchmark
We propose a new benchmark inspired by resource gath-

ering problems, such as the one described in [15]. Our
benchmark has many adjustable settings that shape the
problem and, as such, is able to satisfy all criteria.2

5.1. Shape of the environment

In our proposed problem, The Collecting Traveller, the
agent starts in the bottom-left corner of a field and has to
move to the goal in the top-right corner. Within the field are
several resources of different types. Each type corresponds
to an objective. Collecting a resource, i.e., moving to its
location, results in a positive reward in the objective corre-
sponding to the resource type. Furthermore, a reward of−1

2The satisfaction of the last feature (g) is somewhat limited, as it is
possible that not all Pareto front features can be created; we were unable
to prove whether it is possible to create discontinuities in the Pareto front.
I.e., gaps in an otherwise continuous front.
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is given in a separate objective for each action performed.
An example of shapes that the benchmark can take is seen
in Figure 1.

Figure 1. An example field with the start position S, the goal po-
sition G, two resource types 4 and �, one resource of � and two
resources of 4, either discrete (left) or continuous (right).

Default definition

• A state s = (Posx, Posy, Res1, . . . , ResNr ) ∈ S,
where (Posx, Posy) is the position of the agent and
Resi are booleans indicating whether or not resource
i has been picked up.3 The initial position is (0, 0)
(lower left). The goal (top right) is a terminal state.
• A set of actions: A = {↑,→, ↓,←} corresponding to

one step in that direction.
• Deterministic transitions; actions always succeed. If

an agent walks into the border, his position remains
the same.
• Deterministic rewards. An immediate reward vector

has the form R = (−1, B1, . . . , BNt), where Bi is
a reward for collecting a resource of type i. For one
problem instance, the positions of resources are the
same for each episode.
• A planning horizon of 1000 steps (finite horizon). The

rewards are not discounted.

5.2. Adjustable parameters

In order to support generalisation and adjust difficulty,
the following parameters can be set:
Field size – The field’s width and height can be set.
Resources – Collecting a resource will give the agent a re-
ward in the objective corresponding to the resource’s type.
More resources can be placed at the same location. The
number of resources can be set by the user.

The number Nt of types of resources can be set, but can-
not be more than the amount of resources. The number of
objectives is Nt + 1.

The locations of the resources are randomised in order
to generalise. Each resource can have a minimum and max-
imum reward assigned where a uniformly random chosen
reward from that range is awarded when the resource is
collected. However, exact locations and rewards of the re-
sources can also be specified if wanted.
Pick up when collecting – By default, resources are picked
up when collected. Alternatively, they can be left, allowing

3In the code, the state also contains the resource positions and types.

them to be collected multiple times. To facilitate this, the
action wait is added, allowing the agent to consecutively
collect the same resource.

Limited pick-ups – The amount of resources an agent can
collect can be limited in order to require an extra considera-
tion during the decision making process. After the limit has
been reached, attempting to collect a resource will not give
a reward or have the resource picked up in the state. This
helps create an additional challenge, as well as reducing the
amount of states.

Action space – There are three possible discrete action
spaces that can be selected: a tiny, A = {↑,→}, a small
A = {↑,→, ↓,←}, and a full action space A = {↑,↗,→
,↘, ↓,↙,←,↖}, in which each arrow corresponds to one
step in that direction.

When collected resources are not picked up and can be
collected multiple times, an additional wait action is avail-
able that leaves the agent in the same position. This leaves
the infinite horizon setting with action spaces of 3, 5 or 9
actions.

Transition stochasticity – It is possible to provide an action
failure probability. Upon action failure, a randomly selected
action from the action space is performed in addition to the
chosen action. If the failure causes the agent to skip the
position of a resource, it will not be collected.

Horizon – The problem can have either a fixed amount of
time steps as horizon, or an infinite horizon.

Discount factor – For infinite horizon settings, the discount
factor γ ∈ [0, 1) can be set.

5.3. Extensions
We offer two extensions to the standard MOMDPs:

Partial observability – Only the locations of resources
within a Manhattan distance of 1 of the agent will be visible,
i.e., at each time step, the agents receives a vector of length
Nr in which each resource is denoted as picked up, not
picked up or not observed. The probability of (incorrectly)
not observing a resource can be set, false positives do not
occur. In this case, instead of a MOMDP, we have a multi-
objective partial-observable MDP (MOPOMDP) [12, 14].

Continuity – For continuous problems, the agent and re-
source locations are no longer discrete but can be any value
within the field size such that coordinates are defined as
(x, y) ∈ [0, width] × [0, height]. In addition, actions are
replaced by a 2-dimensional continuous value from [−1, 1]
where one value indicates horizontal movement and the
other vertical movement. Resources are collected when the
Manhattan distance between the agent and the resource is
less than 1. A visual representation of a continuous envi-
ronment is seen in Figure 1 (right).
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5.4. Availability
The benchmark implementation can be used in two fash-

ions. As it is written in Java, the project can be included
in any other Java project. This gives programmers complete
control over the specific use of the benchmark, which is par-
ticularly useful when it is desired to perform specific tests
rather than the standard experiment. The source code can be
found on the Git repository at https://github.com/
tvkanters/MORL-benchmark.

Alternatively, other programming languages can be con-
nected through MORL-Glue, which is the multi-objective
extension of RL-Glue4. By writing an agent with the in-
terface of the MORL-Glue codec implemented, it can re-
ceive observations and rewards while responding with ac-
tions. Running the benchmark implementation will provide
the environment on the other end which handles all transi-
tions based on the received actions.

6. Experiments
In order to demonstrate our benchmark, we imple-

mented two algorithms designed to solve MOMDPs: Multi-
Objective Monte-Carlo Tree Search5 (MOMCTS) [17] and
Convex Hull Value Iteration (CHVI) [1]. We test and com-
pare these algorithms using different problem instances of
our generalised benchmark (with known PFs and CHs),
judging performance across different state spaces, resources
and action spaces. In addition, we create a problem to high-
light that CHVI can quickly identify the CH but not the PF.
With the exception of the last problem, we let each algo-
rithm run ten times for 1000 episodes where each episode
ends after 1000 steps or reaching the goal state. After each
run, the resource positions are shuffled for generalisation
purposes.

6.1. Problem sizes

The first experiment involves testing both algorithms
with different problem sizes. For this we use three differ-
ent problems of sizes 4 by 4, 7 by 7 and 10 by 10. These
problems have 2, 4 and 5 resources to pick up respectively.
In Figure 2 (left), we can observe the different behaviour
of the algorithms by looking at the additive ε-metric (from
which the MUL can be calculated for Lipschitz-continuous
scalarisation functions). CHVI often finds a (near) optimal
solution faster than MOMCTS. Regardless of problem sizes
however, MOMCTS has a better policy for a period during
the search before getting caught up by CHVI.

6.2. Action spaces

In order to judge how well the algorithms handle dif-
ferent action spaces, we test both with all available action

4http://glue.rl-community.org/wiki/Main_Page
5For computational reasons, our implementation of MOMCTS differs

slightly in that it uses the projection on the hypercubes.
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Figure 2. The additive ε-indicator over steps across different prob-
lem sizes (left) and different action spaces (right), averaged over
the 10 runs.

spaces (Section 5.2) in the previously used 4 by 4 problem.
The results, as seen in Figure 2 (right), show that while the
behaviour is similar to that across different problem sizes,
MOMCTS is able to handle large state spaces better in the
early stage; the large action space performance indicates
that it achieves relatively better performance early on.

6.3. Convex hull

Finally, we test the algorithm against a problem that is
meant to indicate behaviour of finding the convex hull rather
than the complete Pareto front, as CHVI does. To do this,
an environment as seen in Figure 3 (left) is used. In con-
trary to the default setting, this problem has more than 4
actions (the agent can also move diagonally) and the agent
can only collect one resource. The rewards for collecting
each resource are shown per location in Figure 3. N.B.,
the time cost of 1 per step is still active. This results in
the convex hull {(−3, 0, 1), (−2, 1, 0)} and the Pareto front
{(−3, 0, 1), (−2, 1, 0), (−3, 0.4, 0.4)}.

(0,1) (1,0) goal
start (0.4,0.4)

Figure 3. The field of the convex hull problem.

When looking at the average rewards in Figure 4, we see
that even though CHVI’s solution lacks a point from the
Pareto front, as opposed to MOMCTS’s, the linear scalari-
sation function gives both the same reward. This is because
with linear scalarisation, a convex hull is already an optimal
solution. To show that there is in fact a difference between
the two solutions in terms of potential rewards, we define a
monotonically increasing scalarisation function:

f(Vπ,w) = min
i=1,...,n−1

(V πi ) +

n∑
j=1

wjV
π
j

In the context of this problem, using this function means
that the agent gets an extra reward if it collects the same
amount of each resource type. In our case, there are
only two resource types to collect, giving us f(Vπ,w) =

mini=1,2(V πi ) +
∑3
j=1 wjV

π
j . Using this function, we see
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Figure 4. The expected utility and its standard deviations over time
with a linear scalarisation function (left) and a monotonically in-
creasing (nonlinear) scalarisation function (right).

in Figure 4 (right) that once MOMCTS has found a better
solution set than the convex hull, it achieves a higher reward
than CHVI.

7. Conclusion

In this paper we proposed two methods to assess the
quality of an approximate solution with respect to the (max-
imal) utility loss and a benchmark for multi-objective re-
inforcement learning which is publicly available and can
be used cross-language through MORL-Glue. Our bench-
mark is parameterisable and creates a whole class of prob-
lems rather than focusing on a specific one. We discussed
the current standard of quality evaluation metrics and the
drawbacks when rigorously applying them in a MORL set-
ting. To perform a more suitable evaluation, we advocated
the expected utility metric and showed how to use the ε-
metric [22] to estimate the maximal utility loss of Lipschitz-
continuous functions.

To demonstrate some of the capabilities of our bench-
mark we implemented and compared two state-of-the-art
algorithms: MOMCTS and CHVI. Our benchmark has
proven to be capable of illustrating key differences between
algorithms in terms of learning speed, solution quality and
solution set characteristics.

In future work, we intend to compare different planning
[6, 19] and learning [16, 20] algorithms for MO(PO)MDPs,
and provide other generalised benchmarks based on differ-
ent scenarios.
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[16] K. van Moffaert and A. Nowé. Multi-objective reinforcement
learning using sets of pareto dominating policies. JMLR,
15:3483–3512, 2014.

[17] W. Wang, M. Sebag, et al. Multi-objective monte-carlo tree
search. In Asian conference on machine learning, 2012.

[18] S. Whiteson, B. Tanner, M. E. Taylor, and P. Stone. Gen-
eralized domains for empirical evaluations in reinforcement
learning. In ICML, 2009.

[19] M. A. Wiering and E. D. De Jong. Computing optimal
stationary policies for multi-objective markov decision pro-
cesses. In ADPRL, pages 158–165, 2007.

[20] M. A. Wiering, M. Withagen, and M. M. Drugan. Model-
based multi-objective reinforcement learning. In ADPRL,
pages 1–6, 2014.

[21] E. Zitzler. Evolutionary algorithms for multiobjective opti-
mization: Methods and applications, volume 63. 1999.

[22] E. Zitzler, J. Knowles, and L. Thiele. Quality assessment of
pareto set approximations. In Multiobjective Optimization,
pages 373–404. 2008.

8


