
Ordered Preference Elicitation Strategies for Supporting
Multi-Objective Decision Making

Luisa M Zintgraf
Vrije Universiteit Brussel
University of Oxford

Diederik M Roijers
Vrije Universiteit Brussel

Vrije Universiteit Amsterdam

Sjoerd Linders
City of Amsterdam,

Signal Control Design and Analysis

Catholijn M Jonker
Delft University of Technology

Ann Nowé
Vrije Universiteit Brussel

ABSTRACT
In multi-objective decision planning and learning, much attention
is paid to producing optimal solution sets that contain an optimal
policy for every possible user preference profile. We argue that
the step that follows, i.e, determining which policy to execute by
maximising the user’s intrinsic utility function over this (possibly
infinite) set, is under-studied. This paper aims to fill this gap. We
build on previous work on Gaussian processes and pairwise com-
parisons for preference modelling, extend it to the multi-objective
decision support scenario, and propose new ordered preference
elicitation strategies based on ranking and clustering. Our main
contribution is an in-depth evaluation of these strategies using com-
puter and human-based experiments. We show that our proposed
elicitation strategies outperform the currently used pairwise meth-
ods, and found that users prefer ranking most. Our experiments
further show that utilising monotonicity information in GPs by
using a linear prior mean at the start and virtual comparisons to
the nadir and ideal points, increases performance. We demonstrate
our decision support framework in a real-world study on traffic
regulation, conducted with the city of Amsterdam.

KEYWORDS
Multi-Objective Decision Making; Decision Support; Preference
Elicitation; Gaussian Processes; Active Learning

1 INTRODUCTION
Understanding what humans want is an integral part of artificial
intelligence (AI), and of central importance when using AI to assists
humans in making decisions. Consider tasks like picking which
film to watch, or deciding on a route for a road-trip through Europe:
the amount of options to choose from is often too large for a human
to iterate through, making the search for the best option a possibly
cumbersome process. In this case, AI can support – and accelerate
– the user’s decision-making. To this end, the AI system needs to
learn about the user’s preferences efficiently by asking the right
questions and guide the search by generalising to new options.

AI-supported human decision making is used, e.g., in recom-
mender systems [1, 11, 37] or negotiating agents [24, 27]. In this
paper, we focus on decision support in the context of multi-objective

Preprint of our AAMAS 2018 paper, July 2018, Stockholm, Sweden
© 2018 Association for Computing Machinery.
. . . $ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Decision support scenario. In the planning or learning
phase a coverage set (CS) for a multi-objective decision problem is
produced. In the selection phase, the user selects the policy that
maximises his or her utility by interacting with an algorithm for
preference elicitation. Finally, the selected policy is executed. In
this paper, we focus on the selection phase.

decision making [20, 40], where each option has several attributes
that influence the user’s preferences. The AI subfield of multi-
objective decision theoretic planning and learning [3, 31, 34, 35, 47,
49–51] studies complex multi-objective decision problems. Such
studies typically focus on producing so-called coverage sets, i.e.,
a set that contains an optimal policy for every possible user prefer-
ence profile with respect to the different objectives. It is commonly
(explicitly or implicitly) assumed that user preferences can be mod-
elled by a utility function that is monotonically increasing in all
objectives, leading to a possibly infinitely sized Pareto front as cov-
erage set. However, the selection problem that follows (fig 1), i.e.,
selecting the policy the user likes best, is typically left open. Since we
do not have direct access to the user’s intrinsic utility function, this
step is far from trivial. We argue, in accordance with the utility-
based approach to multi-objective decision making [39, 54], that
the selection phase is an integral part of solving a multi-objective
decision problem, and that doing this suboptimally can be detri-
mental to user utility. Therefore, we believe that algorithms for
the selection phase should be seen as an essential part of multi-
objective decision-theoretic planning and learning. These should
learn about a specific user’s utility with respect to the objectives,
and find a single (approximately) optimal policy in terms of user
utility which can be executed. In this paper we propose and analyse
methods to do so, under two main considerations: how to elicit the
user’s preferences, and how to model these in the multi-objective
setting. To find the policy that the user likes best, we take an ac-
tive learning approach, where we alternate between updating the
model of the user’s utility and querying the user for feedback by
using relative feedback queries. Relative comparisons are a natural
way for humans to express preferences (as discussed in sec 2.2). To
model the user’s preferences, we utilise Gaussian processes (GPs),

https://doi.org/10.1145/nnnnnnn.nnnnnnn

preprint, July 2018, Stockholm, Sweden Luisa M Zintgraf, Diederik M Roijers, Sjoerd Linders, Catholijn M Jonker, and Ann Nowé

since Bayesian methods like these work well with little data (and
interactions with the user are a scarce resource, see sec 2.3). We
build on a method that uses a novel likelihood for pairwise compar-
isons in GPs [13] (sec 2.3), and were further inspired by the active
learning setting of Brochu et al. [8], who iterate between asking
the user for feedback via a pairwise comparison, updating the GP
with this information, and selecting the next query (sec 2.4).

In this paper we extend their approach to other query types, like
asking the user to rank or cluster items (sec 4). Our main contribu-
tion is an in-depth evaluation of these in synthetic experiments (sec
5), and in a user study (sec 6). Our results show that ranking queries
lead to better utility models, and are preferred by humans over the
pairwise and clustering approach. We further propose to utilise the
monotonicity assumption of multi-objective decision problems by
using a linear prior mean for the GP, and virtual comparisons (sec
3). We show experimentally that this indeed improves performance
(sec 5.2). We also found that while using a linear prior mean leads to
a large performance increase at the beginning, it is essential to turn
off the prior after some initial data has been collected, to not restrict
the GP too much. Finally, we demonstrate the implementation of
our method in a real-world example; a project in collaboration with
the municipality for traffic regulations of Amsterdam (sec 7).

The source code for our methods and experiments can be found
at https://github.com/lmzintgraf/gp_pref_elicit.

2 BACKGROUND
In this section we introduce the framework of multi-objective deci-
sion making and how user utilities are formalised within it. We then
introduce Gaussian processes, and how to use them with pairwise
comparative judgements and active learning.

2.1 Multi-Objective Decision Making
Much multi-objective decision making takes place in the context
of the decision support scenario [39] (fig 1), which applies to multi-
objective decision-theoretic planning and learning [39], but also to
multi-objective (heuristic) optimisation with, e.g., evolutionary al-
gorithms [15]. The ultimate goal in this scenario is tomaximise user
utility by executing the policy a specific user likes best. However,
users typically cannot express their preferences directly, and thus
a priori scalarisation of the objectives is not possible. In this case,
we need an approach that delivers a coverage set (CS) of possibly
optimal solutions. We refer to this as the planning/learning phase.
The selection phase that follows, i.e, finding the policy from this
set that maximises a specific user’s utility, is the focus of this paper.

We call a single solution in a multi-objective decision problem
a policy π ∈ Π and denote its value as v ∈ Rd , where d ≥ 2 is the
number of objectives and Π the set of all possible policies. In the
context ofmulti-objective Markov decision problems (MOMDPs) [50]
for example, a policy’s value is its expected cumulative reward in
each objective. Following Roijers et al. [39], we assume that the
user has as an intrinsic utility function

u : v 7→ uv (1)

that maps a multi-dimensional policy value to a scalar uv ∈ R ac-
cording to the user’s preferences (a common assumption in general
literature on decision making and preference elicitation [14, 19]).

The higher this value, the higher the user’s preference for the policy.
Since all objectives are desirable, u is monotonically increasing in
all objectives. Given this monotonicity property, the solution set
is a Pareto coverage set (PCS), i.e., Pareto front, that contains for
any allowed policy π ′ ∈ Π with value v′ a policy that has a greater
or equal value in all objectives [39]. Consequently it contains an
optimal solution for any user preference profile,

∀u ∃(v∈PCS) : ∀v′ ∈ Π : u(v) ≤ u(v′) . (2)

When Π is an infinite set of policies (e.g., the set of all possible
stochastic policies for an MOMDP), the PCS can contain infinitely
many policies. However, due to a result by Vamplew et al. [46], it
is typically possible to construct a PCS by mixing policies from a
much smaller solution set, alleviating the necessity to compute the
PCS explicitly. More precisely, we can use the convex coverage set
(CCS) which contains non-dominated policies whose values satisfy

∀w ∈ Rd∃v ∈ CCS : ∀v′ ∈ Π : w⊤v′ ≤ w⊤v , (3)

with non-negative weights w that sum to 1. This insight is impor-
tant, because the CCS is typically much smaller than the PCS. E.g.,
in MOMDPs with a finite number of states and actions there is
a CCS that is a finite set of deterministic stationary policies. The
PCS for MOMDPs is then a piecewise linear surface comprised of
(infinitely many) mixture policies that have policies from the CCS
as constituent policies. A mixture policy is a stochastic mixture
of two or more policies, and the value of this policy is the linear
combination of the adjacent policies (see Vamplew et al. [46]). In the
decision support scenario, we want to maximise the utility function
u, restricted to the mixtures of CCS policy values as input. To this
end, we need to elicit preference information from the user.

2.2 Preference Elicitation
We distinguish two ways of querying user preferences: scoring of
items (absolute feedback), or comparisons between items (relative
feedback). Expressing preferences in absolute terms is more difficult
for humans and prone to errors, as numbers are an unnatural way
to express preferences [45] (consider “I like this film 0.4 much”)
and the values might change over time [43] with the users mood
[18, 44] which may depend on something seemingly trivial like the
weather. Relative feedback [45, 55] is easier for humans to express
(consider “I prefer film A over B”), and is typically more consistent
over time [28]. We therefore focus on relative feedback.

When a user compares policies v1 and v2, we assume there are
true utility values u(v1) and u(v2) which the user cannot directly
access, but uses indirectly to compare items. Since personal eval-
uations by users are likely not always 100% accurate and vary
depending on different factors, we model the outcome of a compar-
ison based on noisy utility values u(v) + ε , where ε ∼ N(0,σ 2) is
Gaussian noise with zero mean and unknown variance (following
[8, 13]). The observations we get from the user thus stem from the
comparison of the true utility values, contaminated with noise,

u(v1) + εv1 > u(v2) + εv2 , (4)

denoted as v1 ≻ v2 (meaning the user prefers v1). We want to
use such relative preferences to find the policy π∗ whose value
v∗ maximises the user’s utility function u. In the next section we
introduce an approximation method that is suitable for this task.

https://github.com/lmzintgraf/gp_pref_elicit

Ordered Preference Elicitation Strategies for Supporting Multi-Objective Decision Making preprint, July 2018, Stockholm, Sweden

2.3 Gaussian Processes for Pairwise Feedback
A key objective when asking for feedback is to not bother the user
with too many queries – otherwise, the user might quit using our
system before its goals are achieved. We therefore need methods
that work well with little data and take the uncertainty about the
user’s preferences into account. Bayesian optimisation techniques,
like Gaussian processes, are particularly suited for tasks where
there is little available data [17].

Gaussian processes (see [38] for a general introduction) are
used to approximate functions, and can be seen as an infinite-
dimensional extension of a multivariate Gaussian distribution. A
GP approximates a function and captures its uncertainties by as-
signing to each point in its domain a normal distribution – the mean
value reflecting the expected value, and the variance reflecting the
uncertainty about the function value at that point. The Gaussian
process is fully specified by a mean functionm and a kernel k ,

u(v) ∼ GP(m(v),k(v, v′)) . (5)

Before querying the user for information, the GP is initialised by
defining a prior mean function and the kernel function. Common
choices are the zero functionm(x) = 0 for the prior mean and the
squared exponential kernel which we also use here; an alternative
prior mean function is discussed in section 3.2.

The prior belief P(u) (defined by the GP) about the utility func-
tionu is updated in light of new data and its likelihood P(D |u) using
Bayes’ rule P(u |D) ∝ P(u)P(D |u) . The posterior P(u |D) is the up-
dated belief about the user’s utility, and the current approximation
of the utility function. The data D in our case is given in terms of
pairwise comparisons (see equation (4)),

D = {vm ≻ v′m }Mm=1. (6)

Chu and Ghahramani [13] introduce a probit likelihood for such
noisy pairwise comparisons. Given this likelihood and a Gaussian
process prior, the posterior is analytically not tractable and has to
be approximated. Following [7], we use Laplace approximation.

To approximate the user’s utility with a GP, we take an active
learning approach, meaning we alternate between updating the
GP (approximating the posterior) and querying the user for more
information (based on our current approximation). In the next
section, we describe how to select the next question for the user.

2.4 Active Learning
Chu and Ghahramani [13] show that GPs with the above defined
pairwise likelihood work well on fixed datasets, where learning is
done off-line and (during learning) we do not have influence on the
information that is collected from the user. Here instead, we are
interested in an active learning setting, where the queries for new
information are based on the current information and belief about
the user’s preferences. Functions that select a next item given a
Gaussian process are called acquisition functions. These typically
try to balance exploration (querying the user about items with high
uncertainty in user utility) and exploitation (suggesting items to
the user that have high expected utility). Following [7, 8], we use
the expected improvement acquisition function [30] to, at each step,
select an item about which the user is queried about next.

3 MULTI-OBJECTIVE DECISION SUPPORT
WITH GAUSSIAN PROCESSES

To use GPs for optimising user utility in multi-objective decision
support, we restrict the domain of the acquisition function (3.1) and
utilise monotonicity information about the user’s preferences (3.2).

3.1 Input Domain
The input domain of the user’s utility function, as well as the GP we
use to approximate it, is the d-dimensional hypercube defined by
the (possibly unknown) minimum and maximum possible values of
the d objectives. In the multi-objective planning or learning phase
(fig 1), a coverage set is produced which contains an optimal solution
for every possible user. This will typically be an infinite subset of the
d-dimensional hypercube, since trade-offs between the objectives
constrain the solution set. On this set, the user’s utility function
can have local maxima. Since we aim to maximise the user’s utility
on this solution set, we restrict the acquisition function to this set.
This way, we only present achievable solutions to the user. Doing
otherwise could bias the user, give rise to unrealistic expectations,
and we might waste time asking the user about items that are not
feasible.

3.2 Utilising Monotonicity Information
In the multi-objective decision support scenario, we assume the
user’s utility function to be monotonically increasing in each ob-
jective. This information can be used in the GP approximation.

3.2.1 Prior Mean. If no information about the function that
is approximated is known a priori, the most commonly used GP
prior mean is the zero function (sec 2.3). However, because we
have a monotonic utility function, we want to use a better heuristic
as a prior. We propose a linear prior mean function with equal
weights for all objectives for this heuristic. Equal weights implies
that the user would care equally about all objectives, and linearity
means that the user’s utility increases linearly in the value of each
objective. Note that a linear prior mean function does not imply that
the GP can only model linear functions; the shape of the functions
is determined by the kernel.

In Section 5.2 we show that adding such a heuristic prior is highly
useful when not many queries have been posed to the user, but
can hinder the GP when more data becomes available. Hence, we
propose to remove this heuristic after an initial number of queries.

3.2.2 Virtual Comparisons. We optimise the user’s utility on
the set of achievable and possibly optimal solutions, i.e., the PCS.
Around the PCS however, we can add virtual comparisons (which
are not shown to the user) that include items that lie outside the PCS,
to enforce monotonicity. We propose to compare each item that is
selected by the acquisition function to the minimal and maximal
item (also called the nadir and ideal points). These are the vectors
that contain the minimal (resp. maximal) value for each objective,
independent of the other objective values. We hypothesise that
because this extra information enforces some monotonicity for the
GP, it will lead to better approximations.

preprint, July 2018, Stockholm, Sweden Luisa M Zintgraf, Diederik M Roijers, Sjoerd Linders, Catholijn M Jonker, and Ann Nowé

4 PREFERENCE ELICITATION STRATEGIES
This section introduces the query types we study in this paper; pair-
wise comparisons (from previouswork), and new ranking/clustering
strategies. We describe all query types in the following, and show
orderings that may result in figure 2.
• Pairwise Comparisons. Brochu et al. [7] use an active learn-
ing approach with pairwise comparisons: in each step, the user
compares two items; the winner of which will be compared to a
new item in the next query. Thus after N queries, the user made
N − 1 comparisons, which are used to (sequentially) update the
GP. This typically leads to a partial ordering of items (2a); the
extreme cases being a total ordering and a degenerate case where
the first item is better than all items from subsequent queries.

• Ranking. Here, the user is asked to make a full ranking of all
inputs, leading to a total ordering over the items (2b). The user
initially starts with ranking two items, and in each round one
more item is added, which has to be sorted into the ranking. I.e.,
after N queries the user has evaluated N − 1 items and ordered
those as a sorted list. We use the N −1 pairs of successive items to
update the GP. Note that this ranking approach leads to the same
number of comparisons as pairwise comparisons, but we get a full
ordering. In other words, the data quantity is the same (assuming
the user does not re-arrange items), but the information quality is
higher when doing ranking, compared to pairwise comparisons.

• Clustering. Instead of requesting a full ranking, we can ask the
user to: pick a best item, and put the other items into clusters
of decreasing utility (2c). Items whose utility values are close
are put in the same cluster. The number of clusters can either
be pre-determined or defined dynamically by the user. With two
clusters, the user’s preferences would then be expressed in the
form

xbest ≻ C1 ≻ C2 , (7)
where xbest is a single best item, andC1 andC2 are disjunct sets
whose union contains the remaining items. C1 ≻ C2 means that
the items in cluster C1 are better than the ones in C2. We can
then use this data in our Gaussian process with the pairwise
comparison likelihood by comparing xbest to every item in C1,
and every item inC1 to every item inC2, giving us |C1 |+ |C1 |∗ |C2 |
pairwise comparisons. In general, for any number of clusters, we
have at least N − 1 comparisons.

• Top-Rank. This query type is a mix of the above: the user is
asked to rank the top k items (in figure 2d we chose k=3), and
all remaining items are put in one cluster. This gives us N − 1
pairwise comparisons, and is qualitatively between the pairwise
and full ranking approach. We test this approach since more
information about the upper region of the user’s utility function
might help find the maximum faster.
Each experiment starts by asking the user to compare two items,

independent of the query types. In each subsequent step, one new
item is selected using the acquisition function, and the question
asked to the user will depend on the query type. For all rank-
ing/clustering queries (2b-2d), we allow the user to re-order the
items in each time step, or merge items into the same cluster. The
history of previous queries is kept in the dataset that is used to
update the GP. Due to the noise in the utility values and since users
are allowed to re-arrange items, it can happen that the relative

a

b

c

f

e

d

д

(a) Pairwise Comparisons

a b c d e f д

(b) Ranking

a b/c/d/e f /д

(c) Clustering (2 clusters)

a b c d/e/f /д

(d) Top-Rank (top 3)

Figure 2: Possible outcomes of different query types for items a-д,
with utilities u(a) > ... > u(д). The arrows represent the prefer-
ence information expressed by the user (preferred → unfavoured).
Different elicitation strategies lead to different orderings: full rank-
ing returns a total ordering (b); the other query types typically lead
to partial orderings.

order of two items is swapped between queries. We handle these
apparent inconsistencies by just keeping two contradicting pair-
wise comparisons in the dataset; experiments showed that there is
no significant difference to removing these contradictory samples
(results not shown).

In the following sections, we evaluate the different query types
and study the effect of utilising monotonicity information. We
first do this by simulating a user behaving according to a given
utility function (sec 5) in order to have access to the true utility
values. We then present results from a user study in which we
let humans answer queries of different types in a multi-objective
decision problem (sec 6). Finally, we combine our findings in a real-
world application in collaboration with policy makers for traffic
regulation in the city of Amsterdam (sec 7).

5 EXPERIMENTS I: OPTIMISATION QUALITY
In this section, we evaluate our proposed strategies in terms of
how well we can optimise the user’s utility, i.e., how close and how
fast we get to the maximal achievable utility. For this we need
access to the ground truth utility function of the user. We therefore
use a virtual user whose utility function we know (read: define).
We assess utilising monotonicity information in section 5.2, and
the different query types in section 5.3. In the following, we first
describe our experimental set-up and how we defined the virtual
user’s utility function and simulate the decision making process.

Ordered Preference Elicitation Strategies for Supporting Multi-Objective Decision Making preprint, July 2018, Stockholm, Sweden

5.1 Virtual Utility Function
First, we define a virtual user by defining a monotonic utility func-
tion that represents its preferences, taking the following form

u(v) =
d∑
i=1

wi · fi (vi) , (8)

where v is the d-dimensional value of a policy,
∑d
i=1wi = 1, and

fi (vi) is a monotonically increasing function that maps the i-th
entry of the vector v to a scalar value. The functions fi can take
two forms, either that of stacked sigmoids

fi (x) =
n∑
j−1

1
1 + exp(−x(a − i) + (b + i)) (9)

or a polynomial
fi (x) = (cx − 1)3 . (10)

In our experiments, one run consists of a number of queries asked
to the (virtual user). After each query, the GP is updated and a new
item is chosen with the acquisition function. For each run, we first
randomly (uniformly) choose the d utility functions fi we use, as
well as the values a ∈ [10, 50], b ∈ [1, 20], n ∈ [1, 10] and c ∈ [1, 5]
(separately for each fi). We further randomly generate solution sets
(PCSs) which hold all possibly optimal policies, and on which we
want to maximise user utility. The input space is always x ∈ [0, 1],
and we normalise the functions fi individually to map to [0, 1]
(omitted here in favour of readability) to allow easy comparisons
between the results. Figure 3 shows examples of stacked sigmoids,
polynomials, and general utility functions.

Given this utility function, we simulate users expressing their
preferences over items. We start by selecting two starting items x1
and x2 using the acquisition function (note: with zero prior infor-
mation, these are selected uniformly at random) and then alternate
between evaluating the query, updating the GP, and selecting a
new item from the acquisition function again. How the queries
are evaluated with our virtual utility function is described in the
following for the different query types.
• Pairwise: At each step, the winner of the previous query x∗ and
a new item xnew are compared. We evaluate the utility function
to obtain u(x∗) and u(xnew), and add noise ε∗ and εnew , drawn
i.i.d. from a normal distributionN(0,σ 2). The noisy utility values
u(x∗)+ ε∗ and u(xnew)+ ε∗ are compared and the result is added
to the dataset D. The winner of this comparison is used in the
next query (with different noise).

• Ranking/Clustering: At each step, we have N items from previ-
ous queries, and a new itemxnew .We evaluate the utility function
to obtain u(x1), . . . ,u(xN),u(xnew), and add noise ε1, . . . , εN ,
εnew , drawn i.i.d. from a normal distribution N(0,σ 2). We then
produce a ranking or clustering based on the noisy utility values.
Note that in each query, we draw new noise values for all items.

• Clustering: To simulate the clustering, we use K-Means (see,
e.g., [5]). There is no general agreement in the literature on how
humans perform clustering, especially since this depends heavily
on the task itself and prior knowledge. Just like the shape of the
utility function itself, using K-Means is therefore a somewhat
arbitrary choice based on the intuition of the authors.

Figure 3: Examples of stacked sigmoids (9), polynomials (10), and
virtual user utility functions (8). On the right, we used d = 2 and
show a slice through the utility function: the mapping of the first
objective (x0) to the solution set (PCS).

Figure 4: Utilising Monotonicity: Performance when using differ-
ent prior functions (left), reference points (middle), and a mix of
both (right). We switch from a linear to a zero prior after 5 queries,
and stop adding virtual comparisons after 5 queries as well. The re-
sults are averaged over all query types and 100 runs each. We used
d = 5 objectives and low utility noise with σ = 0.01.

5.2 Results: Utilising Monotonicity
Within the multi-decision making framework described in section
2.1, we assume that the user’s utility function is monotonic, i.e., all
objectives are desirable. In section 3, we proposed two strategies for
utilising this information: adding a linear prior, and adding virtual
comparison points. We compare these strategies (and combinations
of them) by looking at the reached utility at each query step. Here,
we are interested in both how fast good user utility is reached, and
the final utility value.

Figure 4 shows the results for adding information via the GP
prior mean function (left), adding virtual comparisons (middle) and
a mix of these (right). Compared to not using any prior information,
addingmonotonicity information always gives a performance boost.
Using a linear prior mean function for the GP at the beginning
helps the acquisition function focus on the promising regions, and
jump-starts the reached utility. However using a linear prior mean
throughout all queries, the performance at some point drops lower
thanwhen using a zero priormean from the start. The same does not
hold for reference points. This is because while a linear prior mean
function is a heuristic, that might hinder the search process later
on, virtual comparisons only enforce monotonicity. The plot on the
right shows that a combination of a linear prior at the beginning
and virtual comparisons throughout all queries works best.

preprint, July 2018, Stockholm, Sweden Luisa M Zintgraf, Diederik M Roijers, Sjoerd Linders, Catholijn M Jonker, and Ann Nowé

Figure 5: Utility: This graph shows the reached utility per query.
We used d = 5 objectives and different noise levels σ = 0.01 (left)
and σ = 0.1 (right). The results are averaged over 100 runs. The
top row shows the performance without using prior information,
and the bottom shows the performance when using a linear prior
mean function at the beginning, and reference points throughout.
Pairwise comparisons are outperformed by other query methods
both regarding convergence speed and final reached utility. (Best
viewed in colour.)

Figure 6: GP Approximation: This graph shows the approximation
of the GP to the true utility function, for d = 2 objectives and when
plotting the first objective against the utility on the PCS. We show
this for two different random seeds (rows) and for the pairwise (left)
vs. ranking (right) query, after 10 queries. Aswe can see, the ranking
query is able to approximate the GP much better. This is due to the
different types of orderings (partial vs full) available to the GP on
the given datapoints. We hypothesise that a better approximation
enables the acquisition function to suggest better points per query,
which explains the superior performance of ranking queries.

5.3 Results: Query Types
In this section, we compare our proposed elicitation strategies to
the pairwise approach of [8] in terms of approximating the utility
function, and attaining a high utility. Figure 5 shows, per time step,
the utility of the currently highest rated item, for d = 5 objectives
and two different noise levels (low/high). The pairwise approach is
outperformed by all other methods, especially when there is high
noise in the utility function. The full ranking generally performs
best, but the difference to clustering and top-rank is not significant
when there is a lot of noise in the utility function.

We plot the number of queries against the reached utility, so that
each method at each time step has the same datapoints available
(since one item is added in each query, regardless of the query type).
The difference is in the number of comparisons between those
datapoints, which is lowest for the pairwise approach. We note
though that the better performance cannot be solely because of the
higher number of available comparisons: ranking and clustering
methods not only reach higher utility faster, they also converge to
a higher utility compared to the pairwise approach.

We believe that the superior performance of ranking and cluster-
ing queries stems from having a better approximation to the utility
function. While we are only interested in finding the maximum, and
not necessarily in closely approximating the user’s utility function
as a whole, a better approximation helps the acquisition function
to make a more informed decision about which item to select next.
In figure 6 we show the GP approximation to two different utility
functions for pairwise queries and ranking after 10 queries. While
both methods are close to the maximum, ranking queries give a
better overall approximation. The pairwise method also found an
item with near-optimal utility, but since it does not know anything
about the relationship between the remaining datapoints, the ap-
proximation quality in these areas is poor, and the variance high.
One might argue that this is not necessary for finding the maximum
element since we are not interested in areas with low utility, but
we believe our results give strong indication that a better overall
approximation quality can help solve the optimisation problem
faster and better.

6 EXPERIMENTS II: USER STUDY
In the previous section, we used a virtual user with a utility function
we defined ourselves, and we found that ranking queries lead to the
best results. In this section, we investigate how real users experience
and interact with the system.

6.1 Description of User Study
To assess which query type humans prefer and how well they work
in reality, we built a web-interface for multi-objective decision mak-
ing, including three query types: pairwise, ranking, and clustering
(with two clusters). We chose to not test the top-rank method, since
this is a mix between ranking and clustering, and we think this
might become more relevant for larger studies where many items
are compared (and full ranking becomes infeasible).

We chose a decision making scenario over job offers (as previ-
ously used in, e.g., [36]). Each job offer has three attributes: the
number of days per week on which the employee can work from
home, the salary, and the probation time in months. We randomly

Ordered Preference Elicitation Strategies for Supporting Multi-Objective Decision Making preprint, July 2018, Stockholm, Sweden

generated 50 job offers with these attributes. We then defined a
mathematical utility function over job offers, and selected three
pairs of jobs with low utility to present in the initial query. We
used a zero prior for the GP, and used the acquisition function as
described in section 2.4 to select a new job offer at each step.

Each user that participated in our experiment was asked to an-
swer queries about job offers for all query types, according to a
persona description, in which we described the utility function over
jobs in simple words. The participants were given one minute to
answer queries of each type. At the end, the user was asked to
complete a survey about his or her experience. We collected 50
responses for this user study via Amazon Mechanical Turk. When
running the experiments, we randomised the order in which the
user took the different experiments (i.e., query types) as well as the
pair of starting jobs.

6.2 Results
After participating in our experiment, we asked users about the
perceived effort per query, whether they think the algorithm un-
derstood their preferences, and which query type they prefer for a
decision-making tool. The results are shown in figures 7 - 9. We also
logged the user’s responses to the queries and show the average
reached utility per step (according to the true utility function we
described to the user in words) in figure 10.

The results show that the majority of participants found the
effort to be acceptable across all queries (fig 7), and ranking queries
were rated as high effort slightly more often. Most users felt that the
algorithm understood their preferences and suggested better jobs
over time (fig 8), and they felt most often so for the pairwise query.
Despite these results, pairwise comparisons was not the query type
that users prefer for a decision-making tool (fig 9). To our surprise,
the ranking query was rated 1st most often, and 3rd least often. It
further surprised us that clustering was consistently ranked lowest,
and that users did not seem to like it. In terms of reached utility
(fig 10), all query types show similar performance. The figure also
shows the average number of queries answered in one minute per
experiment type, and we see that the users were able to answer on
average 15 pairwise queries, and 8-10 for clustering/ranking.

In conclusion, users prefer the ranking query type in this one-
minute experiment, although it requires slightly more effort and
the users felt less often understood by this method than the other
query types. We hypothesise that this is because the ranking gives
more control over the process, and items can be visually compared
to previous items. We do not have a good intuition about why
clustering was so unpopular. We expected this to be the easiest and
most popular method, since jobs only had to be sorted into three
categories (single best job/good jobs/bad jobs).

7 EXPERIMENTS III: APPLICATION
In order to test our decision making tool in a real-world applica-
tion, we worked on a project together with the municipality of
Amsterdam. Part of their daily work is traffic control in the city,
which is a complex real-world task with many objectives. For crit-
ical intersections in the city, the municipality utilises specialised
simulation software to test policies for traffic regulation. However,
since there are many free parameters and each setting needs to be

Figure 7: Effort: For each query type, the participant was able to
choose between the options ’effort was okay’, and ’too much effort’.
Users typically found the effort acceptable for all query types.

Figure 8: Understanding: We asked the users whether they felt like
the algorithm understood their preferences and suggested better
jobs over time. Most people thought it did.

Figure 9: Preference: We asked the users to rank the query types,
according to what they would prefer as a tool to support them in a
decision-making situation. Most users preferred ranking.

Figure 10: Utility: This graph shows the reached utility over time,
according to the utility function we defined and described to the
participants in words. All query types have similar performance.
We can also see that the average number of answered queries in
the pairwise setting is about 15, and 8-10 in the clustering/ranking
scenario within the given minute.

tested several times to account for variance in the simulation, it is
near impossible for humans to manually test all settings. We thus
hypothesise that policy makers can benefit from a decision-making
support system like ours.

For our experiment, we gathered results from the simulation
software (for 256 different parameters settings, averaged over 10
runs each), simulating two hours during rush hour for one of the
city’s busiest traffic areas. There are 11 objectives, which together

preprint, July 2018, Stockholm, Sweden Luisa M Zintgraf, Diederik M Roijers, Sjoerd Linders, Catholijn M Jonker, and Ann Nowé

Expert 1 Expert 2
Order pairwise - ranking ranking - pairwise
Queries: pairwise 22 20
Queries: ranking 8 12
Time (min): pairwise 4:06 2:37
Time (min): ranking 1:43 6:14
Preference ranking ranking

Table 1: Results in terms of how many items the experts
looked at, how long each experiment took, and which query
type they preferred.

reflect the delay duration and queue length in different directions
and for different traffic participants. First, we removed the Pareto-
dominated results, leaving us with 75 parameter settings with possi-
bly optimal value. Two experts from the municipality then used our
web-interface as a tool to find the best outcome, according to their
intrinsic utilities. In this case, we have no access to the true utility
values of the users. Our experiments therefore investigate whether
the experts think the system is useful when used in a real-world
problem, and which preference elicitation strategy they prefer.

We only used pairwise and ranking queries in this experiment,
since clustering performed poorly in our user study (sec 6). Each par-
ticipant started with one of the two query types, and then switched
to the other. Instead of having a time limit, the participants now
had the choice of either requesting a new item, or finishing the
experiment by saying they are satisfied with the current outcome.

Table 1 shows the results from this experiment. Both experts
answered about twice as many queries for pairwise comparisons
than for ranking before they were satisfied with the outcome, and
both spent more time on the first experiment than on the second,
regardless of query type. Both experts preferred the ranking query
types. They both found the same item in the ranking query, but
different ones in the pairwise comparison. We received positive
feedback from the experts, who found our multi-objective decision
support system to be a useful tool. They preferred the ranking
queries since it makes it easier to compare items.

We thus conclude that our multi-objective decision support sys-
tem – using ranking, a temporary prior heuristic, and virtual com-
parisons – can be used by policy makers to aid them in their work.

8 RELATEDWORK
In this paper we model the utility function using GPs, which has
important advantages: it explicitly models the uncertainty over
the function, enabling active learning, and in contrast to e.g., using
POMDPs or predecessingmethods [6, 10], it can handle a continuum
of items. The main framework for relative preferences in Gaussian
processes we use is taken from the work of Chu and Ghahramani
[13]. They propose a likelihood for pairwise comparisons that can
be used in GPs for preference learning. Their experiments are done
on fixed datasets, i.e., they do off-line instead of active learning.
The extension of these relative preference GPs to active learning
by Brochu et al. [7, 8] asks the user to compare two items in each
query; the winner from the last query and a new item suggested by
the acquisition function. Chu and Ghahramani [12] also propose
an active learning approach with relative preference GPs, but for
the learning to rank task. They, at each step, select the pair of items
with the highest expected entropy term. The objective in learning

to rank is to approximate the unknown function, instead of finding
the best item. Jensen et al. [26] extend the approach of Chu and
Ghahramani [13] so that the user can in addition specify a degree
of preference when comparing two items, for which they propose a
novel likelihood to use with the Gaussian process. While this idea
is in principle orthogonal to ours, due to the intrinsically ordinal
nature of human preferences, we consider the risk of misspecifica-
tion by introducing a ratio scale for degrees of preferences too high
to attempt integrating it with our method. Pairwise preferences
with GPs have been applied to a variety of settings, such as sound
quality reduction mechanisms in hearing aids [21], material design
[8, 9] and learning to predict emotions expressed in music [32]. We
believe that our strategies could be useful in many of these.

9 CONCLUSION
In this paper, we proposed new strategies to elicit user preferences
in an active learning setting with Gaussian processes, by asking the
user to rank or cluster items. We showed that compared to previ-
ous work which uses pairwise comparisons, ranking and clustering
methods can both find a better approximation to the utility function,
and select items with higher utility for the user in fewer queries.
Furthermore, we showed that we can obtain better results by enter-
ing monotonicity information into the GP via virtual comparisons.
We further showed that utilising a heuristic linear prior mean func-
tion during the first queries leads to increased performance, but
that this heuristic should be turned off in later queries.

A user study showed that the ranking method was most popular,
although the perceived effort was slightly higher, and users felt less
often understood by this method than for example the pairwise
comparisons. Surprisingly, clustering methods were least popular.

Finally, we successfully used our proposed decision-making tool
in a real-world project on traffic regulation together with the mu-
nicipality of Amsterdam. We showed how human expertise can
successfully be combined with decision-making tools, and received
positive feedback from our collaborators. We hope that this work
inspires new real-world applications involving multiple objectives,
and will be used in multi-objective optimisation [15, 16, 23, 29],
planning [4, 41, 48, 53], and RL [2, 33, 42, 52] alike.

In future work, we aim to perform more extensive real-user
experiments. We aim to extend our approach to multi-user settings,
like has been done by Houlsby et al. [25] for pairwise feedback
from multiple users or Guo et al. [22] who, for a new user, use
an informed GP prior inferred from other. We also aim to study
acquisition functions that pick more than one next item, based on
look-ahead information gain [6]. Furthermore, we are interested
in investigating a more principled approach to deciding when to
disable the linear prior mean function.

ACKNOWLEDGMENTS
The authors would like to thank the municipality of Amsterdam
for their time and insights, and to the employees that tested our
decision making tool. We thank the anonymous MTurk workers for
participating in our study. This research was supported by Innoviris,
the Brussels Institute for Research and Innovation, Brussels, Bel-
gium. Diederik M. Roijers is a postdoctoral fellow of the Research
Foundation - Flanders (FWO), grant number 12J0617N.

Ordered Preference Elicitation Strategies for Supporting Multi-Objective Decision Making preprint, July 2018, Stockholm, Sweden

REFERENCES
[1] G. Adomavicius and A. Tuzhilin. 2015. Context-aware recommender systems. In

Recommender systems handbook. Springer, 191–226.
[2] Peter Auer, Chao-Kai Chiang, Ronald Ortner, and Madalina Drugan. 2016. Pareto

front identification from stochastic bandit feedback. In Artificial Intelligence and
Statistics. 939–947.

[3] Leon Barrett and Srini Narayanan. 2008. Learning all optimal policies with
multiple criteria. In Proceedings of the 25th international conference on Machine
learning. ACM, 41–47.

[4] Nawal Benabbou and Patrice Perny. 2017. Adaptive elicitation of preferences un-
der uncertainty in sequential decision making problems. In The 26th International
Joint Conference on Artificial Intelligence.

[5] Christopher M Bishop. 2006. Pattern recognition and machine learning. springer.
[6] C. Boutilier. 2002. A POMDP formulation of preference elicitation problems. In

AAAI. 239–246.
[7] E. Brochu, V. M. Cora, and N. De Freitas. 2010. A tutorial on Bayesian optimiza-

tion of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning. arXiv:1012.2599 (2010).

[8] E. Brochu, N. de Freitas, and A. Ghosh. 2008. Active preference learning with
discrete choice data. In NIPS. 409–416.

[9] E. Brochu, A. Ghosh, and N. de Freitas. 2007. Preference galleries for material
design.. In SIGGRAPH Posters. 105.

[10] U. Chajewska, D. Koller, and R. Parr. 2000. Making rational decisions using
adaptive utility elicitation. In AAAI. 363–369.

[11] Konstantina Christakopoulou, Filip Radlinski, and Katja Hofmann. 2016. Towards
Conversational Recommender Systems.. In KDD. 815–824.

[12] W. Chu and Z. Ghahramani. 2005. Extensions of gaussian processes for ranking:
semisupervised and active learning. Learning to Rank (2005), 29.

[13] W. Chu and Z. Ghahramani. 2005. Preference learning with Gaussian processes.
In ICML. 137–144.

[14] R. T. Clemen and T. Reilly. 2013. Making hard decisions with DecisionTools.
Cengage Learning.

[15] Carlos A Coello Coello, Gary B Lamont, David A Van Veldhuizen, and others. 2007.
Evolutionary algorithms for solving multi-objective problems. Vol. 5. Springer.

[16] Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. 2005. Scal-
able test problems for evolutionary multiobjective optimization. In Evolutionary
multiobjective optimization. Springer, 105–145.

[17] M.P. Deisenroth, D. Fox, and C.E. Rasmussen. 2015. Gaussian processes for data-
efficient learning in robotics and control. IEEE Trans. on Pattern Analysis and
Machine Intelligence 37, 2 (2015), 408–423.

[18] J. P. Forgas. 1995. Mood and judgment: the affect infusion model (AIM). Psycho-
logical bulletin 117, 1 (1995), 39.

[19] J. Fürnkranz and E. Hüllermeier. 2010. Preference learning: An introduction.
Springer.

[20] S. Greco, J. Figueira, and M. Ehrgott. 2005. Multiple criteria decision analysis.
Springer’s Int. series (2005).

[21] P. C. Groot, T. Heskes, T. M. H. Dijkstra, and J. M. Kates. 2011. Predicting
preference judgments of individual normal and hearing-impaired listeners with
Gaussian Processes. IEEE Transactions on Audio, Speech, and Language Processing
19, 4 (2011), 811–821.

[22] S. Guo, S. Sanner, and E. V. Bonilla. 2010. Gaussian process preference elicitation.
In NIPS. 262–270.

[23] Pascal Halffmann, Stefan Ruzika, Clemens Thielen, and David Willems. 2017. A
general approximation method for bicriteria minimization problems. Theoretical
Computer Science 695 (2017), 1–15.

[24] T. Haynes, S. Sen, N. Arora, and R. Nadella. 1997. An automated meeting sched-
uling system that utilizes user preferences. In AA. 308–315.

[25] N. Houlsby, F. Huszar, Z. Ghahramani, and J. M. Hernández-Lobato. 2012. Col-
laborative gaussian processes for preference learning. In NIPS. 2096–2104.

[26] B. S. Jensen, J. B. Nielsen, and J. Larsen. 2011. Efficient preference learning with
pairwise continuous observations and Gaussian processes. In MLSP. 1–6.

[27] C. M. Jonker, V. Robu, and J. Treur. 2007. An agent architecture for multi-attribute
negotiation using incomplete preference information. JAAMAS 15, 2 (2007), 221–
252.

[28] D. C. Kingsley. 2006. Preference uncertainty, preference refinement and paired
comparison choice experiments. University of Colorado (2006).

[29] Arnaud Liefooghe, Bilel Derbel, Sébastien Verel, Hernán Aguirre, and Kiyoshi
Tanaka. 2017. A fitness landscape analysis of Pareto local search on bi-objective
permutation flowshop scheduling problems. In International Conference on Evo-
lutionary Multi-Criterion Optimization. 422–437.

[30] D. J. Lizotte. 2008. Practical Bayesian optimization. U. of Alberta.
[31] Daniel J Lizotte, Michael Bowling, and Susan A Murphy. 2012. Linear fitted-Q

iteration with multiple reward functions. Journal of Machine Learning Research
13, Nov (2012), 3253–3295.

[32] J. Madsen, B. S. Jensen, and J. Larsen. 2012. Predictive modeling of expressed
emotions in music using pairwise comparisons. In CMMR. 253–277.

[33] P. Mannion, J. Duggan, and E. Howley. 2017. A Theoretical and Empirical Analysis
of Reward Transformations in Multi-Objective Stochastic Games. In AAMAS.
1625–1627.

[34] Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon White-
son. 2016. Multi-Objective Deep Reinforcement Learning. arXiv preprint
arXiv:1610.02707 (2016).

[35] Simone Parisi, Matteo Pirotta, and Marcello Restelli. 2016. Multi-objective Rein-
forcement Learning throughContinuous ParetoManifold Approximation. Journal
of Artificial Intelligence Research 57 (2016), 187–227.

[36] Alina Pommeranz, Joost Broekens, Pascal Wiggers, Willem-Paul Brinkman, and
Catholijn M Jonker. 2012. Designing interfaces for explicit preference elicitation:
a user-centered investigation of preference representation and elicitation process.
User Modeling and User-Adapted Interaction 22, 4-5 (2012), 357–397.

[37] A. M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M. McNee, J. A. Konstan, and J.
Riedl. 2002. Getting to know you: learning new user preferences in recommender
systems. In IUI. 127–134.

[38] C..E.. Rasmussen. 2006. Gaussian processes for machine learning. (2006).
[39] D..M.. Roijers, P.. Vamplew, S.. Whiteson, and R.. Dazeley. 2013. A Survey of

Multi-Objective Sequential Decision-Making. JAIR 48 (2013), 67–113.
[40] D.M. Roijers and S. Whiteson. 2017. Multi-objective Decision Making. Morgan &

Claypool.
[41] D. M. Roijers. 2016. Multi-Objective Decision-Theoretic Planning. Ph.D. Disserta-

tion. University of Amsterdam.
[42] D. M. Roijers, L. M. Zintgraf, and A. Nowé. 2017. Interactive Thompson Sampling

for Multi-objective Multi-armed Bandits. In ADT. 18–34.
[43] S. Siegel. 1956. Nonparametric statistics for the behavioral sciences. (1956).
[44] E. Sirakaya, J. Petrick, and H.-S. Choi. 2004. The role of mood on tourism product

evaluations. Annals of Tourism Research 31, 3 (2004), 517–539.
[45] G. Tesauro. 1988. Connectionist Learning of Expert Preferences by Comparison

Training.. In NIPS, Vol. 1. 99–106.
[46] P. Vamplew, R. Dazeley, E. Barker, and A. Kelarev. 2009. Constructing stochastic

mixture policies for episodic multiobjective reinforcement learning tasks. In
AI’09. 340–349.

[47] Kristof VanMoffaert andAnnNowé. 2014. Multi-objective reinforcement learning
using sets of pareto dominating policies. Journal of Machine Learning Research
15, 1 (2014), 3483–3512.

[48] Weijia Wang and Michele Sebag. 2012. Multi-objective monte-carlo tree search.
In Asian conference on machine learning, Vol. 25. 507–522.

[49] Weijia Wang and Michele Sebag. 2013. Hypervolume indicator and dominance
reward based multi-objective Monte-Carlo Tree Search. Machine learning 92, 2-3
(2013), 403–429.

[50] C Ch White and Kwang W Kim. 1980. Solution procedures for vector criterion
Markov decision processes. Large Scale Systems 1, 4 (1980), 129–140.

[51] Marco A Wiering and Edwin D De Jong. 2007. Computing optimal stationary
policies for multi-objective markov decision processes. In Approximate Dynamic
Programming and Reinforcement Learning, 2007. ADPRL 2007. IEEE International
Symposium on. IEEE, 158–165.

[52] Marco AWiering, Maikel Withagen, and Mădălina M Drugan. 2014. Model-based
multi-objective reinforcement learning. In ADPRL. 1–6.

[53] Kyle Hollins Wray, Shlomo Zilberstein, and Abdel-Illah Mouaddib. 2015. Multi-
Objective MDPs with Conditional Lexicographic Reward Preferences.. In AAAI.
3418–3424.

[54] L.M. Zintgraf, T.V. Kanters, D.M. Roijers, F.A. Oliehoek, and R. Beau. 2015. Quality
assessment of MORL algorithms: A utility-based approach. In Benelearn.

[55] M. Zoghi, S. Whiteson, R. Munos, and M. De Rijke. 2014. Relative Upper Confi-
dence Bound For The K-Armed Dueling Bandit Problem. In ICML. 10–18.

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Multi-Objective Decision Making
	2.2 Preference Elicitation
	2.3 Gaussian Processes for Pairwise Feedback
	2.4 Active Learning

	3 MULTI-OBJECTIVE DECISION SUPPORT WITH GAUSSIAN PROCESSES
	3.1 Input Domain
	3.2 Utilising Monotonicity Information

	4 PREFERENCE ELICITATION STRATEGIES
	5 EXPERIMENTS I: OPTIMISATION QUALITY
	5.1 Virtual Utility Function
	5.2 Results: Utilising Monotonicity
	5.3 Results: Query Types

	6 EXPERIMENTS II: USER STUDY
	6.1 Description of User Study
	6.2 Results

	7 EXPERIMENTS III: APPLICATION
	8 RELATED WORK
	9 CONCLUSION
	Acknowledgments
	References

