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Structure in the value function of zero-sum games of
incomplete information

Auke J. Wiggers
Universiteit van Amsterdam
Amsterdam, The Netherlands
wiggers.auke@gmail.com

ABSTRACT

In this paper, we introduce plan-time sufficient statistics, rep-
resenting probability distributions over joint sets of private
information, for zero-sum games of incomplete information.
We define a family of zero-sum Bayesian Games (zs-BGs),
of which the members share all elements but the plan-time
statistic. Using the fact that the statistic can be decomposed
into a marginal and a conditional term, we prove that the
value function of the family of zs-BGs exhibits concavity in
marginal-space of the maximizing agent and convexity in
marginal-space of the minimizing agent. We extend this re-
sult to sequential settings with a dynamic state, i.e., zero-sum
Partially Observable Stochastic Games (zs-POSGs), in which
the statistic is a probability distribution over joint action-
observation histories. First, we show that the final stage of a
zs-POSG corresponds to a family of zs-BGs. Then, we show
by induction that the convexity and concavity properties can
be extended to every time-step of the zs-POSG.

1. INTRODUCTION

Modeling decision making for strictly competitive settings
with incomplete information is a field with many promising
applications for AI. Examples include games such as poker
[26], and more importantly, security settings [7]. When the
environment can be influenced via actions and the decision
making is sequential, the problem can be modeled as a zero-
sum Partially Observable Stochastic Game (zs-POSG).

Reasoning about zs-POSGs poses a challenge for strategic
agents. Not only do they need to take their own uncertainty
about the state of the environment into account, but also
uncertainty regarding the opposing agent. Furthermore,
because one agent is trying to minimize the reward that the
other is maximizing, behaving strategically typically requires
stochastic strategies. A factor that further complicates the
reasoning is that agents can not only influence the future
state of the environment through their own actions, but also
what they will observe, as well as what the other agent will
observe.

In this paper, we prove the existence of useful properties of
zs-POSGs, that may be exploited to make reasoning about
these models more tractable. We take inspiration from recent
work for collaborative settings which has shown that it is
possible to summarize the past joint policy using so called
plan-time sufficient statistics [16], which can be interpreted

Appears in: The 10th Annual Workshop on Multiagent Se-
quential Decision-Making Under Uncertainty (MSDM-2015),
held in conjunction with A AMAS, May 2015, Istanbul, Turkey.

Frans A. Oliehoek
Universiteit van Amsterdam
University of Liverpool
fao@liverpool.ac.uk

Diederik M. Roijers
Universiteit van Amsterdam
Amsterdam, The Netherlands
d.m.roijers@uva.nl

as the belief of a special type of Partially Observable Markov
Decision Process (POMDP) to which the collaborative De-
centralized POMDP can be reduced [2, 9, 14]. This is helpful,
since it allows the problem to be solved using solution meth-
ods for POMDPs, leading to increases in scalability [2]. We
extend these results to the zs-POSG setting by making the
following four contributions:

1. The introduction of the concept of a family of zero-
sum Bayesian Games and proof that its value function
exhibits certain concave/convex properties.

2. A zs-POSG value function formulation based on the
past joint policy.

3. A zs-POSG value function formulation based on the
new plan-time sufficient statistic, and subsequent re-
duction of the POSG model to a centralized model.

4. A proof that the result for the family of zs-BGs extends
to the finite horizon zs-POSG case. More specifically,
we show that final stage of the zs-POSG is equivalent
to a family of zs-BGs and then prove that the value
function exhibits similar concave/convex properties on
every stage.

As far as the authors are aware, this is the first work that
gives insight in the shape of the value function of the zs-POSG
specified over the space of plan-time sufficient statistics. We
believe that this result about the shape of the value function
will open up the route for effective solution methods like
dynamic programming, and will explain this in more detail.

2. BACKGROUND

In this work, we focus on zero-sum games of incomplete
information where the number of states, actions, observations
and the horizon are finite. We examine games with a static
hidden state, and games with a dynamic hidden state that
may evolve over time. We first provide background on zero-
sum games and formally define the zs-BG and zs-POSG
frameworks. We assume perfect recall, i.e., agents recall past
actions and observations, and assume that all elements of
the game are common knowledge among the agents.

2.1 Zero-sum Normal Form Games

We first shortly discuss zero-sum games before defining the
Normal Form Game framework. In the two-player, zero-sum
setting, rewards for both agents sum to zero. The value
of the game is the value attained when both agents play
rationally, i.e. they follow their respective mazmin-strategies.

Definition 1. A maxmin-strategy for agent i is the strat-
egy that gives the best payoff for agent i, given that the
opposing agent aims to minimize it.



By convention, let agent 1 be the maximizing agent and
agent 2 the minimizing agent. Throughout this work the
value refers to the value for agent 1, as the value for agent 2
is its additive inverse.

To find the maxmin-strategies for a zero-sum game of
complete information, we model it as a Strategic Game, also
known as Normal Form Game (NFG), which is a framework
for multi-agent decision making in one-shot games. The
zero-sum NFG framework is defined as a tuple (I, =, R):

o [ ={1,2} is the set of 2 agents.

e = X Ej is the set of pure strategies £ = {&1,&2}.

o R(&) is the reward function for agent 1.

We distinguish between deterministic or pure strategies &;,
and mixed strategies p; that specify a probability distribution
over pure strategies. Given a mixed joint strategy p =
(1, p2), the value for agent 1 is:

Vara () = ZM(&)R@)
£€E
Using this function, maxmin-strategies and the corresponding
value can be found. A commonly used solution concept is
the Nash Equilibrium (NE), which is a joint strategy from
which no agent has an incentive to unilaterally deviate. In
the zs-NFG, a mixed NE is guaranteed to exist [12], and
happens to coincide with the mixed maxmin-strategies pi
and p5. That is, for every NE (ui, p3), the following holds:

Vare (11 p3) = max min Vypg (p1p2)= min max Vipg (p1p2).
Bl p2 K2 p1
(2.1)

For proof of the validity of (2.1) the reader is referred to [20].
A mixed NE can be found using Linear Programming [1].

2.2 Zero-sum Bayesian Games

The zero-sum Bayesian Game (zs-BG) is a model for multi-
agent decision making under uncertainty in a one-shot zero-
sum game. Two agents simultaneously select an action based
on an individual observation (their type), and aim to maxi-
mize expected individual reward, knowing that the opposing
agent aims to minimize it. It is a tuple (I,0, A, R, o):

e [ ={1,2} is the set of 2 agents.

e O; X O3 is the set of joint types 6 = {61,062}

e A; x A is the set of joint actions a = {a1,az}.

e R(0,a) is the reward function for agent 1.

e o € A(O) is the probability distribution over types.

A pure strategy in a Bayesian Game is a mapping from types
to actions, to which we refer as a pure decision rule §;. A
stochastic decision rule maps from types to probability distri-
butions over the set of actions, denoted as d;(a;|0;). Given a
joint decision rule, which is a tuple containing decision rules
for both agents § = (01, d2), the value for agent 1 is:

Qec(d) £ ZU(G)Zd(aW)R(H,a). (2.2)
6 a

The goal in zs-BGs is to find a rational joint decision rule
and the corresponding value. This value is defined as follows:

Veg 2 max rr;in QBc(0102). (2.3)
1 2

To solve a zs-BG, it can be converted to an NFG by treating
every pure decision rule as a pure strategy. The mixed NE
in this NFG corresponds to a stochastic joint decision rule
0" = (07,05). The value function is then given by (2.1). The
NE in the BG is referred to as the Bayesian Nash Equilibrium
(BNE), i.e. a joint decision rule from which no agent has

an incentive to unilaterally deviate [15]. A more efficient
solution method for zs-BGs involves converting the game to
sequence form and solving it accordingly [8].

2.3  Zero-sum POSGs

A zero-sum Partially Observable Stochastic Game (zs-
POSG) is a model for multi-agent decision making under
uncertainty in zero-sum sequential games where the state
evolves over time. It is a tuple (h,I,S, A,0,T,0, R, b°):

e h is the horizon.

I ={1,2} is the set of 2 agents.

S is the set of states s.

A is the set of joint actions a = {a1,a2}.

O is the set of joint observations o = {01, 02}.

T is the transition function that specifies Pr(s**!|s’, a®).
O is the observation function: Pr(o'**|s'™, a’).
R(s',a") is the reward function for agent 1.

b° € A(S) is the initial probability distribution over
joint states.

In the zs-POSG, we aim to find a rational joint policy®
and corresponding value. Let a pure policy for agent i be a
mapping from individual action-observation histories (AOHs)
9—% = (09 ...0%) to actions. Let a stochastic policy for agent
i be a mapping from individual AOHs to a probability dis-
tribution over actions, denoted as 7;(af|6t). An individual
policy defines action selection of one agent on every stage of
the game, and is essentially a sequence of individual decision
rules m; = (67 .. .5ffl>. We define the past joint policy as
a tuple of decision rules ' = (6°,...,6°7"'), and define the
tuple containing decision rules from stage ¢ to h as the partial
policy = = (6%,...,6"71).

Similar to the BG, a zs-POSG can be converted to normal
form by treating every pure joint policy as a pure strategy.
As such, a mixed NE exists, which corresponds to a stochastic
joint policy. However, solving this NFG quickly becomes
intractable, as the number of pure joint policies is exponential
in the number of agents, actions and observations. In the
zero-sum case, it is more efficient to convert the zs-POSG to
sequence form and solve it accordingly.

3. FAMILIES OF BAYESIAN GAMES

We introduce the concept of a family of Bayesian Games.
In Section 3.1, we prove that in the zero-sum case its value
function exhibits certain concave/convex properties. In Sec-
tion 5, we will use this result to give a similar proof for the
zs-POSG.

Definition 2. A family of Bayesian Games, defined as
a tuple F = (1,0, A, R), is the set of Bayesian Games for
which all elements but the probability distribution over joint
types o are identical.

Let F be a family of zero-sum Bayesian Games. We define
its value function in terms of the type distribution:

Vi(o) & ZU(@)Z(S*(aW)R(@,a). (3.1)
0 a

were 0* is the rational joint decision rule. Note that this
gives the value for the BG in F that has type distribution o.

9'While the terms ‘strategy’ and ‘policy’ are interchangeable,
the first is often used in the field of game theory whereas the latter
is the standard in AL. We will use ‘strategy’ for NFGs, and ‘policy’
for POSGs.



We generahze ( . ) and (2.3) as follows:

)23 " 0(0) Y 6(al0)R(6, a), (3.2)
0 a
V(o) £

We define best-response value functions that give the best-
response value to a decision rule of the opposing agent:

V]l-?Rl (Uv 62) £ l’I(lsaX Q}'(Uv 01 62)3 (34)
1

= r%in Qr(0,0102). (3.5)
2

It follows from equations 3.3, 3.4 and 3.5 that
Vi(o) 2(0,01). (3.6)

max min Q (o, 6102). (3.3)
51 2

V]]-?)R2 (Ua 61)

= min Ve (0,02) = max VER
52 61
3.1 Concavity/convexity of the value function

We will prove that Vz exhibits a certain concave/convex
shape. We decompose ¢ into a marginal term,

Tm1(01) £ a(6:162), (3.7)
0
and a conditional term, ’
9 0 ) 0'(9192)
o1 (0s]0y) 2 T0102) . 3.8
g ,1( 2| 1) 292 0'(9192) Um,l(el) ( )

The terms oy, 2 and o2 are defined similarly. We refer to the
simplex A(©;) containing marginals o.,,; as the marginal-
space of agent i. We define VZ(om,1|oc,1) = V£(o) and use
this notation to indicate that we consider the value function
in A(O;) for a single conditional o ;.

We will show that the best-response value functions defined
in (3.4) and (3.5) are linear in their respective marginal-
spaces. Using this result, we prove that V7 exhibits concavity
in A(©,) for every o1, and convexity in A(©2) for every
0¢,2. For this purpose, let us define a vector that contains
the reward for agent 1 for each individual type 61, given oc 1
and given that agent 2 follows decision rule d2:

Tlre,1,62)(01) fmaxZacl(egwl > 6a(az|02)R(0, a). (3.9)

a2

The vector T(oe.2,81] 18 deﬁned similarly.

LEMMA 1. (1) VERL is linear in A(©1) for all 0.1 and
02, and (2) VZ VER? s linear in A(O2) for all oc,2 and 61. More
specifically, we can write the best-response value functions as
the inner product of a marginal om,; and a vector:

1. VBRJ(O'm,1,(52|0'071) = O0Om,1 * T[gcyl,(b], (310)

2. V]_QRZ(O'm,Q, (51|0'C72) =0m,2 * 7"[00_2,51].

ProoF. The full proof is listed in appendix A. []

THEOREM 1. VZ is (1) concave in A(©1) for a given con-
ditional distribution oc,1, and (2) conver in A(Oz) for a
given conditional distribution o. 2. More specifically, VF is
respectively a minimization over linear functions in A(©1)
and a mazimization over linear functions in A(©2):

L. V;(Jm,ly |UC,1) = n}in [Umal : T[Jc,1762]]’
2
2. Vi(omzlocz2) = max [Um,Q '7"[00,2,51]]'
1
Proor. Filling in the result of Lemma 1 gives:

3.5}

Vi(omaloea) "=" min VEM (0.1, 02]0c,1)
2

{3.10} .
= I%ln [Um,l : T[Uc,1a52ﬂ .
2

The proof for item 2 is analogous to that of item 1. []

4. VALUE FUNCTION OF THE ZS-POSG

In this section, we give two formulations for the value
function of the zs-POSG, one in terms of the past joint policy
(in Section 4.1) and one in terms of a plan-time sufficient
statistic (in Section 4.2). These formulations are relatively
straightforward extensions from previous work on POSGs
with identical payoffs, called Dec-POMDPs [9, 16]. They
allow us, in Section 5, to prove certain properties of the
structure of the value function. In Section 4.3 we show that,
using plan-time sufficient statistics, the POSG model can
be reduced to a centralized stochastic game with hidden
state and without observations, which we refer to as the
Non-Observable Stochastic Game (NOSG).

4.1 Value in Terms of Past Joint Policies

In order to facilitate the formulation in the next subsection,
we first express the value of the POSG at a stage ¢ in terms
of a past joint policy @' (as defined in Section 2.3) attained
when all agents follow the joint decision rule §* and assuming
that in future stages agents will act rationally, i.e., they follow
a rational joint future policy m/t'* = (§*F1* ... Sh1y,

Conceptually, this enables us to treat the problem of finding
a rational joint policy as a series of smaller problems, namely
identification of a rational joint decision rule §'* at every
stage. However, as we will show, a circular dependency exists:
selection of 6° is dependent on the future rational decision
rule 6*7!* which in turn is dependent on ¢’ and thus on &°.

We define the Q-value function at the final stage t =
h — 1, and give an inductive definition of the Q-value func-
tion at preceding stages. We then define the value func-
tion at every stage. Let the reward function in terms of
a joint AOH and joint action be defined as R(6%,a") £
Dot Pr(s'|0%,b°)R(s', a’). The immediate reward for a joint
AOH and a joint decision rule is then'

R(G",5") & Zat g 0, a). (4.1)

For the final stage t = h — 1, the Q-value function reduces
to this immediate reward, as there is no future value:

Qioa(p" 0TS £ RET ST, (4.2)
Given an AOH and decision rule at stage t, it is possible to
find a probability distribution over AOHs at the next stage,

as an AOH at t+1 is the AOH at t concatenated with action
a' and observation of*!:

Pr(6710",6%) = Pr((0",a',0"*1)|0", ")
=Pr(o"™0",a")8" (a']6").  (4.3)

For all stages except the final stage t = h — 1, the value at
future stages is propagated to the current stage using (4.3):

Qi (¢",0",6%) £ R(6",6")+

S Pr(te",6)Q

at ot+1

Qi ("0 23" Pr(0'b°, 0")Q; (¢, 6", 6"). (4.5)

ot

(AT ), (4.4)

We use (4.5) to find rational decision rules for both agents.
Consistent with (4.4), we show how to find 6%

ST = argmax min Q)4 (0", 65T 6ETY),  (4.6)
st+1 sttt
1

oyt = argmmmaXQHl( LS e, (4.7)

5t+1 5



Using (4.2), (4.6) and (4.7), a rational joint decision rule
8"~ can be found by performing a maxminimization over
immediate reward. Evaluation of Qj_, (", 6" '*) gives us
the value at stage ¢ = h — 1, and (4.4) propagates the value
to the preceding stages. As such, rationality for all stages
follows by induction. We can now define the value function
in terms of the past joint policy as:
Vi (¢") = maxmin Qi (¢",6165). (4.8)
1 2
By (4.2), (4.6) and (4.7), 6™ is dependent on "%, and
thus on the rational future joint policy. However, 67~
can only be found if past joint policy ¢'*!, which includes
8", is known. This circular dependency on both the future
and past joint policy makes multi-agent decision making
in POSGs a difficult problem. Furthermore, in the Dec-
POMDP case it is possible to find an exact solution using
dynamic programming because we then search in the finite
space of pure joint policies. In the zs-POSG case, we search
in the infinitely large stochastic policy-space, rendering this
impossible.

4.2 Plan-Time Sufficient Statistics

Even though there are infinitely many past joint policies,
we do not expect that their effects on the game at a particular
stage are completely arbitrary. In fact, in this section we
propose to replace the dependence of the value function on
past joint policies by a plan-time sufficient statistic that sum-
marizes many past joint policies. As we will show, this new
statistic allows us to break the circular dependency discussed
in the previous subsection: with decision rule selection at
stage t dependent on the new plan-time statistic rather than
the past joint policy, agents can determine the rational par-
tial policy 7** if they know the statistic, regardless of choices
made on stages 0 to t. Furthermore, as we will show in Sec-
tion 5, the value function exhibits a certain concave/convex
shape in statistic-space that may be exploitable.

Definition 3. The plan-time sufficient statistic for a
general past joint policy ¢, assuming b° is known, is a
distribution over joint AOHs: o%(8*) £ Pr(0[p°, ©*).

In the collaborative Dec-POMDP case, these plan-time
sufficient statistics fully capture the influence of the past
joint policy in the zs-POSG case. We will prove that this
also holds for the zs-POSG case, by showing that use of
these statistics allows for redefinition of the equations from
Section 4.1. We aim to express the value for a given decision
rule 6" in terms of a plan-time sufficient statistic, given that
the agents act rationally at later stages. We first define the
update rule for plan-time sufficient statistics:

o) £ Pr(o"0", a")6 (a'0%)0" (8Y).  (4.9)

At the final stage t = h — 1, the Q-value function reduces to
the immediate reward, as there is no future value:

Qr_i(a" LM Y ARG, 6", (4.10)
We then define the Q-value for all other stages as:
Qi(c",0",5") 2 R(0",6")+
ST TP, 6 Qia (0", 6T, (4.11)

at ot+1

(0", 6" Za )Qi (0,8, 5"). (4.12)

We use (4.12) to find rational decision rules for both agents:

st = argmaxmeH_l( LSS, (4.13)
6”’1 ‘52

oetr = argmlnmath+1( ST (4.14)
s

6t+1
We formally prove the equivalence of (4.5) and (4.12).

LEMMA 2. o' is a sufficient statistic for the value of the
25-POSG, i.e. Qi(c", 0% 6") = Qi(¢",0",6"),¥t€0...h—
1,V0" € A(6Y),V6".

PROOF. The proof is listed in appendix A. [J

We define the value function for a two-player, zs-POSG,
similar to (4.8), but in terms of o, as follows:

Vi) & max min Q; (c",816%). (4.15)
51 52

Although we have now identified the value at a single stage
of the game, we can not implement a backward inductive
approach directly, as decisions on stages before t affect o.
However, given o, we can compute 7** without knowing ¢,

4.3 Reduction to NOSG

A recent development in the field of Dec-POMDPs, is that
the (decentralized) Dec-POMDP model can be reduced to a
(centralized) special case of POMDP (a non-observable MDP,
or NOMDP) [9, 14, 2, 17], which allows POMDP solution
methods to be employed in the context of Dec-POMDPs. The
proposed plan-time statistics for Dec-POMDPs [16] precisely
correspond to the belief in the centralized model.

Since we have shown that it is possible to generalize the
sufficient plan-time statistics to zero-sum POSGs, it is reason-
able to expect that there also is a reduction to a centralized
model possible. Here we present this reduction to a central-
ized model, to which we refer as a Non-Observable Stochastic
Game (NOSG). We do not provide the full background of the
reduction for the Dec-POMDP case, but refer to [17]. The
difference between that reduction and the one we present
next, is that the zs-POSG is reduced to a centralized model
where the joint AOH acts as the state (in order to support
stochastic policies, see also the discussion in [16]), and that
a maxmin-operator is used to compute the value of the game
instead of a max-operator.

Definition 4. A plan-time Non-Observable Stochas-
tic Game for a zs-POSG is a tuple (S, A,0,T,0,R, bYy:

e A set of augmented states S. Each state §* corresponds
to a joint AOH gt.

e A set of joint actions A. Each action &' corresponds to
a joint decision rule §7. )

e A set of joint observations O =
contains the NULL observation.

e A transition function as specified in (4.3):

T(s4s at) = Pr(67|0", 6%).

e An observation function O that specifies that observa-
tion NULL is received with probability 1.
e A reward function as specified in (4.1):

R(s',a') = R(6",8").

Note that this gives the reward for agent 1 in the POSG,
and that the centralized agent aims to mazminimize it.
e The initial belief over states b° € A(S).

{NULL} that only



In the NOSG model, a centralized agent conditions its
choice on belief over the augmented states b € A(S), which
corresponds to the belief over joint AOHs captured in the
statistic o' € A(O"). As such, a value function formulation
for the NOSG can be given in accordance with (4.15). Note
that while the NULL observation is shared, the state and
action contain entries for both agents in the original zs-POSG.

A zs-POSG can also be converted to a POMDP by fixing
the policies of one agent [11], which leads to a model where
the information state b(s, 6;) is a distribution over states and
AOHs of the other agent. In contrast, our NOSG formulation
maintains a belief over joint AOHs, and does not require
fixing the policy of any agent. That is, where the approach
of Nair leads to a single-agent model that can be used to
compute a best-response (which of course can be employed
to compute an equilibrium, see, e.g., [18]), our conversion
leads to a multi-agent model that can potentially be used to
compute a Nash equilibrium directly.

Observation 1. Ghosh et al. [4] treat a special type of
zs-POSG in which both agents receive the same (i.e., shared)
observations. They show that, for such a problem, a reduction
to a completely observable model is possible and that in the
infinite horizon case a value and rational joint policy must
exist. As the NOSG is a specific case of such a zs-POSG
(with one shared NULL observation), these results directly
extend to the plan-time NOSG for our general zs-POSG. As
such, our reduction shows that the properties established by
Ghosh et al. for a limited subset of zs-POSGs, in fact extend
to all zs-POSGs.

5. CONCAVITY/CONVEXITY

Similar to the decomposition of the distribution over types
in BGs (in equations 3.7 and 3.8), the plan-time sufficient
statistic can be decomposed into a marginal term o}, ; and
conditional term U§,¢~ We will prove formally that the value
function of the two-player zs-POSG exhibits two properties:
It is, at every stage t, concave in marginal-space for agent
1, A(étl), and convex in marginal-space for agent 2, A(C:)’é)
We first define best-response value functions V;°®! and V;BR2,
Using these definitions, we prove the concave/convex proper-
ties of V;*.

Figure 1 provides intuition on how the best-response value
functions relate to the concave/convex value function. For
sample statistics o(;) — (4, the best-response value functions
to some partial policies 75 are shown in blue. If these are the
minimal best-response value functions, then they can be used
to construct the concave value function (in red). As we will
show, selecting a ‘slice’ in statistic-space corresponding to a
single conditional of. ; (0% ) guarantees the concave (convex)

shape of the value function.
e will give a recursive definition of the value in terms

of a statistic and a joint partial policy, V;, that makes the
distinction between the immediate reward and the value
propagated from future stages explicit. Let us first define the
immediate reward function QF that gives the reward attained
at the current stage given a statistic and joint decision rule:

Qf(c",6N) 2> (0RO, 6") =" Ry (5.1)

ot
Here, Rs: is a vector containing reward for every joint AOH,
attained when agents follow the given joint decision rule &°.

Vi

t
9(2) a(3)

t
; I(4)
o -space

ol 1-space

ob, 1-space

Figure 1: An abstract visualisation of the decom-
position of statistic-space into marginal-space and
conditional-space.

We formally define V; as follows:
Vi(o', ") £

Qf'(o",0")
QF(0",6%) + Vi1 (Uss (0, 69), 7F1)

Here, Ugs is the statistic update function derived from (4.9).
Note that through the statistic update, the future value is
dependent on the decision rule 6. Using (5.2), we define
the value function of the zs-POSG as a maxminimization or
minmaximization over 7!, similar to (2.1):

ift=h-1

5.2
otherwise. (5.2)

Vt*(at)émz}xmitn\/t(at,Wiﬂé):mitnm%xvt(at,ﬂﬂé). (5.3)
T T2 T2 0™
Best-response value functions in terms of o and = are
defined as V,PR! and V;BR2| similar to (3.4) and (3.5), for
agent 1 and agent 2 respectively. Similar to (3.6), we have:

Vi (oh) = min VPR (o mh) = max VPR (of wl). (5.4)
T2 1

We will use these definitions to prove the concave/convex
properties of the value function. We have already shown, in
Section 3.1, that the value function of a family of zero-sum
Bayesian Games exhibits concavity and convexity in terms of
the marginals parts of the type distribution o for respectively
agent 1 and 2. We formally prove that this result directly
extends to the final stage of the zs-POSG ¢t = h — 1.

LEMMA 3. For a family of BGs F, if

1. joint actions are equal to joint actions of the POSG,
2. types 0 correspond to AOHs 9_7171,
3. the initial distribution over types o is equal to o1,

then the value function at the final stage of the POSG, V',
and the value function of the family of Bayesian Games, V7,
are equivalent.

PRrROOF. The proof is listed in Appendix A. [

By the results of Theorem 1 (i.e. that the value function
V£ exhibits concavity and convexity in marginal-spaces of
agent 1 and 2 respectively) and Lemma 3, V;7_, is concave in
A(O" 1) for all 0'?7;1, and convex in A(6!71) for all 0251.

Even though the final stage is equal to a family of Bayesian
Games, our approach is substantially different from ap-
proaches that represent a POSG as a series of BGs [3] and
derivative works [19]. In fact, all other stages (0 to h — 2)



cannot be represented as a family of BGs as defined in Sec-
tion 3, as the relation between the decision rule §* and the
value is non-linear. Nevertheless, we show that the analysis
of the value function extends to these stages as well.

We first show that the best-response value functions V,;BR!
and V;BR? are linear in their respective marginal-spaces. Us-
ing this result, we prove that V;* exhibits concavity in A(©})
at every stage for every o 1, and convexity in A(éé) for ev-
ery o} 5. For this purpose, let us define a vector that contains
the value (immediate reward and future value) for agent 1
for each individual AOH 53, given that agent 2 follows the
partial policy 75:

Vit (00) £ max| 37 Lo 1) 3 ab(a 7
al é,é aé

R(0"a")+ Y Pr(0t+1|6ﬁ,at)l/[azﬁlméﬂ](gﬁl) (5.5)
ot+1

Note that this is a recursive definition, and that the next
AOH is 95+ = (6_%, at,ol™). We have established in Lemma
3 that the value function at the final stage t = h — 1 is
equivalent to the value function of a family of zs-BGs. Thus,
the zs-POSG value vector from (5.5) reduces to the value
vector for a family of zs-BGs from (3.9) when we make the
substitutions of Lemma 3:

“h— h—
1/[02111”;71](91 h :7‘[0?5177%71](91 h. (5.6)

Intuitively, this also makes sense, as at the final stage the
future value is zero and the partial policy ﬂg ~! only contains
a single decision rule 627'. The vector Viot , xt] is defined

similarly.

LEMMA 4. (1) VPR is linear in A(6Y) for a given ol
and 75, and (2) V;P72 is linear in A(ég) for a given JZ,Q
and 7%, for all stagest =0,... h — 1. More specifically, we
can write these functions as the inner products of a marginal
Uﬁw- and a vector:

1. ‘/tBRJ(O-:n,lz 71'3|O'2’1) = o‘:n,l : y[gé,pﬂ'é]’ (57)
2. VtBRg(thfn,z,WﬂUﬁ,z) = Ufn,z Vot 5] (5.8)

PrOOF. We prove this by induction. By the result of
Lemma 3, we know the value function at stage t =h — 1 to
be equivalent to that of a family of BGs. As such, the result
of Lemma 1 is a base case for the proof. The full proof is
listed in Appendix A. [

THEOREM 2. V;* is (1) concave in A(GY) for a given ob,

-
and (2) convez in A(O}) for a given ol . More specifically,
Vi is respectively a minimization over linear functions in
- 2
A(©Y) and a mazimization over linear functions in A(6%):

t t . t
1. ‘/t*(o—m,ly |Uc,1) = H}rltn |:0m,1 . V[O'Zyl,ﬂ'él]’
2
w( t toy t
2. Vi (omm.2loé2) = max [am 2 Vgt ﬁn]].
210, nt , Lol
Proor. Filling in the result of Lemma 4 gives:
4}

{5. .
W*(U:n,hhz,l) = mlth}BRl(Uin,zmélaﬁ,l)
T2

&7 min |of, | v
I m,1 " Yog gl
2

The proof for item 2 is analogous to that of item 1. [

The importance of this theorem is that it may enable
the development of new solution methods for these classes
of games. To draw the parallel, many POMDP solution
methods successfully exploit the fact that a POMDP value
function is piecewise-linear and convex in belief-space [21, 28]
(which is similar to the statistic-space in the zs-POSG), and
recently such results have been extended to the decentralized
cooperative case [9, 2].

In future work, we aim to exploit the found structure. Our
results indicate that within ‘slices’ of statistic-space that
correspond to conditional plan-time statistics, it is possible
to approximate the value function using piecewise-linear
and concave/convex functions (as can be seen in Figure 1).
Therefore, using the value vector definition in (5.5), it may
be possible to adapt solution methods for POMDPs [28] or
Dec-POMDPs [9], and apply it at (sampled) conditionals at
the final stage. Corresponding marginals can be sampled, or
selected in an intelligent way [21, 25]. For every marginal, a
value vector can be computed, and, using (5.5), an exhaustive
backup can be performed. This gives us a set of value vectors
at stage 0, which describe a piecewise linear and convex (for
i = 1) or concave (for i = 2) value function in o), ;-space.
As the initial marginal is known, we can then compute the
approximate value of the zs-POSG.

While it is conceivable that a similar reduction to a central-
ized model as the one in Section 4.3 is possible for general-sum
POSGs, we point out that our results do not extend to the
general-sum case directly. In general, there can be many
equilibria, and as such one will need to reason about sets of
possible outcomes rather than just one value.

6. RELATED WORK

In this section we describe related methods for (zero-sum)
POSGs. We do not treat the work by Ghosh et al. [4], which
was already treated in Section 4.3.

A recent paper that is similar in spirit to ours is by Nayyar
et al. [13] who introduce a so-called Common Information
Based Conditional Belief — a probability distribution over
AOHs and the state conditioned on common information —
and use it to design a dynamic-programming approach for
zs-POSGs. This method converts stages of the zs-POSG to
Bayesian Games for which the type distribution corresponds
to the statistic at that stage. However, since their proposed
statistic is a distribution over joint AOHs and states, the
statistic we propose in this paper is more compact. Further-
more, Nayyar et al. do not provide any results regarding the
structure of the value function, which is the main contribu-
tion of our paper.

Hansen et al. [6] present a dynamic-programming approach
for finite-horizon (general sum) POSGs that works by itera-
tively constructing sets of one-step-longer (pure) policies for
all agents. At every iteration, the sets of individual policies
are pruned by removing dominated policies. This pruning
is based on a different statistic called multi-agent belief: a
distribution over states and policies of other agents. Such
a multi-agent belief is sufficient from the perspective of an
individual agent to determine its best response (or whether
some of its policies are dominated). However, it is not a
sufficient statistic for the past joint policy from a designer
perspective (as is the proposed plan-time sufficient statistic
in this paper).

There are a number of papers from the game theory lit-
erature that do present structural (concave/convex) results



on the value function for zero-sum games. The models for
which these results have been proven are substantially less
general than the zs-POSG model that we treat in this paper.

One line of work targets ‘zero-sum sequential game with
incomplete information’ [10, 22, 23, 24]. These can best be
understood as a particular class of two-player extensive games
that lie in between Bayesian games and POSGs: at the start
of the game, nature determines the state (essentially a joint
type) from which each agent makes a private observation (i.e.,
individual type), and subsequently the agents take actions
in turns thereby observing the actions of the other player.
For various flavors of such games, it has been shown that
a value function exists and has a concave/convex structure:
incomplete information on one side [24], and cases with
incomplete information on both sides where ‘observations are
independent’ (i.e., where the distribution over joint types is
a product of individual type distributions) [22] or dependent
(general joint type distributions) [10, 23]. These results,
however, crucially depend on the alternating actions and the
static state and therefore do not extend to zs-POSGs.

Another class of models for which structural concave/convex
results are known are ‘repeated zero-sum games with incom-
plete information on one side’ [27]. In these games action
selection is simultaneous and agents observe the past actions
of the opposing agent. However, found results do not directly
extend to the zs-POSG setting, where there is incomplete in-
formation on both sides and agents do not necessarily observe
the actions of the opposing agent.

A game-theoretic model that is closely related to the POSG
model is the Interactive POMDP or I-POMDP [5]. In I-
POMDPs, a (subjective) belief is constructed from the per-
spective of a single agent as a probability distribution over
states and the types, ¢, of all other agents. As the agents
are rational, each individual AOH induces one type in the
I-POMDP. Therefore, the belief of agent i in the -POMDP,
which is a distribution b(s, {;), can be seen to correspond to

a conditional Uzl(@ﬂgf) in the zs-POSG.

7. CONCLUSIONS

This paper gives a structural result on the shape of the
value function of two-player zero-sum games of incomplete
information, for games of static state and dynamic state,
typically modeled as a Bayesian Game (BG) and Partially
Observable Stochastic Game (POSG) respectively. We in-
troduced the concept of a family of zero-sum BGs, F, the
members of which share all elements but the plan-time statis-
tic: a probability distribution over joint types. Using the fact
that this probability distribution can be decomposed into a
marginal and a conditional term, we gave proof that in the
zero-sum case its value function Vz exhibits concavity (con-
vexity) in the marginal-space of the maximizing (minimizing)
agent. We gave two formulations for the value function of the
zero-sum POSG: One in terms of the past joint policy, and
one in terms of the recently introduced sufficient plan-time
statistics (originally used in the collaborative setting [16]).
We proved the equivalence of both formulations, and gave
formal proof that at the final stage of the game, the latter
formulation is equivalent to V7, meaning that it exhibits a
similar structure. Using this result, we gave inductive proof
that the zero-sum POSG value function exhibits similar con-
cave/convex properties at all stages. Finally, we discussed
possible uses of the found properties.
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APPENDIX
A. PROOF OF LEMMA’S

PROOF OF LEMMA 1. We expand (3.2) in order to bring
the marginal term to the front of the equation:

Qr(0,8) 23" 0(0) Y a(alO) R0, 0) (A1)
0 a
= D oma(00) e (6a]01) D b1(a1]61)

252(0,2‘02)}2(0102,&10,2). (AZ)

A maximization over stochastic decision rules conditioned
on the AOH 6, is equal to choosing a maximizing action for
each of these AOHs. Thus, we can rewrite the best-response
value function from (3.4) as follows:

VFH (0, 02) = max Qf (0, 8102)

{A.2}

= max E om,1(01) g 0c,1(02]01) g d1(a1]01)
1
01 62 ai

Z 02(az|02) R(60102, araz)
az

= (6 1 (02101) S 62(a2|02) R (O,
%:U 1( 1)“}3X %:0,1( 2] 1)% 2(az2|02) R(9, a)

{3.9}
= oma(00)7(o, 1 521 (01) = Tt oy a1
01

As it is possible to write VER®! as an inner product of the
marginal distribution o, 1 and a vector, VEX! is linear in
A(O1) for all o1 and d2. Analogously, V]]_}R2 is linear in
A(O7) for all 0.2 and 6;. [

PrOOF OF LEMMA 2. The proof is largely identical to the
proof of correctness of sufficient statistics in the collaborative
setting [16]. For the final stage t = h — 1, we have the
following:

Qi(¢",0",6") = R(#",6") = Qi(o",0", ")
. As induction hypothesis we assume that at stage ¢ + 1,
o1 is a sufficient statistic, i.e.:
Qipa (™0 Sei1) = Qiia (0,6 61ia). (A3)
We aim to show that at stage ¢, o’ is a sufficient statistic:
Qi (9", 0",8") = Qi (0", 8",8"). (A.4)
We substitute the induction hypothesis into (4.4):
4.4 N *
FIRE 6 + 30 Pr(@ 8, 8 Qri (91,0 6
at ot+1
FEIRE 6+ S Pr(@ ", 6 Qi (o, 6 51
at ot+1

{4.11}

- Q:(Utaé%76t)'



Furthermore, decision rules 6“;“ (based on the past joint

policy) and 6;4;2* (based on the sufficient statistic) are equal:

t41x {4.6}

Olpp =

Gt+1p0 1 1 g+l 1
argmaxmin > Pr(0" 6%, o) Q1 1 (¢, 07, 6
5f+1 3 +1
gt+1
Def.3 .
(et }argmaxmm JHI(@_HI)QtH(UH'l,éHl,5t+1)
6'+1 51+1

9t+1

{423} 6{;13*4
Analogous reasoning holds for 5;*;* Thus, by induction, o*

is a sufficient statistic for ¢*, Vt € 0...h—1. O

PrOOF OF LEMMA 3. Given is that:
1. joint actions are equal to joint actions of the POSG,

2. types 0 correspond to AOHs gn!
1

3. the initial distribution over types ¢ is equal to o1,

At stage t = h — 1, the partial policy 7"~! contains only

the joint decision rule 6"7!. As such, we have:
‘/t( h—1 ﬂ_h*l) _ Vh_l(Uhil,(;hil)

5.2 _1. {51 _ _ _ _
{ }Q (o h— 176h 1){:}20)1 1(0% 1)R(§h 1,6h 1)

gh—1
{4.1} Z h—1/ph—1 h—1|gh—
= o ) > 6(a" e
gh—1 ah—1

By premises 1-3, this is equal to Q £:
{3.2}
Qr(0,0) 1S 0(0) S (al0)R(6, a).
0 a
As such, we have Q7 (c,8) = V,,_1(c"7*,6"71). From (3.3)
and (5.3), it follows trivially that V(o) = Vi, (¢"™1). O

1)R(0_7171, ah*l).

PrOOF OF LEMMA 4. By the results of Lemma 1 and
Lemma 3, we know the best-reponse value function V;PR!
to be linear in A(6"~') For all other stages, we assume the
following induction hypothesis:

VER (o8 w8 = ot v ey (A5)
For the inductive step we aim to prove that at the current
stage ¢ the following holds:

BR1 t t t t
‘/t (Um,la 7r2|08,1) = Um,l : V[crz;

(A.6)

TSl

We expand the definition of VPR, For notational conve-
nience, we write o’ instead of O’fn’i|0'2’i, but keep in mind
that we only consider the statistics corresponding to the
conditional O'zyi.

VtBRl(Ut,ﬂ'é) {54} maXVt(U 7T17T2)
i
{'_}maX [Q?(Ut, 8182) + Vi1 (Uss(o", 6"), Wi+1ﬂ§+1)]
i
- ey [QE(UHI, 3105) + VtH(JHIJiHW%H)]
1

i [me, 5168) + mas [V (o1, 241 71)
Tr

{5:4}max [QF(o* 8ta8) + VER (o mi e ] (A

1

We make the decomposition of ¢ into the marginal and
conditional terms explicit again. Immediate reward QF can
be expanded similar to (A.2):

QF (0%, 6405]0% 1) = 01 (B)ok 1 (BB1A%) 3 5% (a1
aj

Z 62 ag‘et

We expand VtBRl using the induction hypothesis in order to
bring the marginal distribution Ufﬂ’l to the front:

(6404, atab). (A.8)

BR1, t+1 _t+1; t+1y {A-5} 41
V;H—l ( Om,15T2 c,1 ) = Om,a .V[aiJrll,Tr;+1]

= Z H_l(é?—l) [tﬁl,wgﬂ](é‘?—l)

gutt
{49}2 T ( 1 ZO—LI 2| 1 251 253(05‘%)
t

Z Z Pr(ot+ ot |5t 02,alag)u[oz?m;ﬂ](g_ﬁﬂ).

ot 1 ot+1
o1 9y

(A.9)

Filling the expanded equations into (A.7) and factorizing
gives:

{5.4}

BRl( m177r2|gc 1) =

BRI( t+1 t+1| t+1)] {A.siA.g}

t
max [ m,7 5152\%,1) + Vit (0masm |oeh

max Zaml Ot ZU“ 92|9t 261 a1|0 262

R(0",a")+ Y Pr(o"6",a’)

ot+1

I/[Ut+11m;+1](9_§+1) (A.IO)

Note that the vector is indexed by the conditional UH'I.
While this conditional is dependent on %, it is not dependent
on &%, allowing us to remove the maximization over decision
rules 8% from the equation. As a maximization over decision
rules conditioned on individual AOH 6} is equal to choosing
the maximizing action for each of these AOHs, we can rewrite
(A.10) as follows:

Vit (o!, )
= > o) max | >0l (85161) D 55 (as|6s
§t “ L ab
1 2 2

nt+1
0
[gifll,ﬁ;“]( 1 )

R(0",a") + Z Pr(o'™0", a')v

ot+1
{5.5} t (gt
= Z Om,1 (61)’/[02_1,7751
ot '

This corresponds to (A.6). Therefore, by induction, best-

response value function V;ER!

02,1 and 75, for all stages t =0...

(A.11)

(05) = U')tn,l V[o- 1,71'2]

is linear in A(6%) for a given
h — 1. Analogously, V;BR?
is a linear function in A(éé) for a given ol and 7}, for all
stagest=0...h—1. [
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