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Abstract

Many real-world optimisation problems involve balancing multiple objectives. When there is no
solution that is best with respect to all objectives it is often desirable to compute the Pareto front.
Firstly, we propose queued Pareto local search (QPLS), which improves on existing Pareto local
search (PLS) methods by maintaining a queue of candidate solutions that prevents premature exclu-
sion. Secondly, we propose Pareto local policy search (PLoPS), which improves upon QPLS in the
context of multi-objective sequential decision problems known as multi-objective Markov decision
processes (MOMDPs). PLoPS exploits the structure of MOMDPs by quickly identifying policies that
are improvements without fully evaluating them, and intelligently initialising their values. We test the
performance of QPLS and PLoPS on respectively multi-objective coordination graphs (MO-CoGs)
and MOMDPs, and compare them to popular evolutionary and decision-theoretic alternatives. The
results show that QPLS and PLoPS outperform these alternatives.

Real-world problems often have multiple possibly conflicting objectives. Solutions for such prob-
lems are evaluated for each objective and compared based on a dominance relationship such as the
Pareto dominance relationship. In [1], we describe a new Pareto local search method called QPLS.
QPLS is good at solving single-stage decision problems. However, some decision problems are sequen-
tial. We propose PLoPS [2] that improves upon QPLS in the context of sequential problems and exploits
properties of our neighbourhood definition to use fewer and faster evaluations of MOMDP policies.

Algorithm 1 QPLS(Q, k, f)

1: P ← ∅ J the Pareto archive
2: while Q.notEmpty() do
3: π ← Q.pop()
4: H recursive local improvements
5: π ← PI(π, f)
6: H π undominated by P
7: if ∀p ∈ P : f(π) ⊀ f(p) ∧ f(π) 6= f(p)
8: P ← merge(P, {π})
9: H new candidates

10: N←{π′∈N (π) : f(π) 6� f(π′)}
11: Q.addK(N, k)
12: end if
13: end while
14: return P

QPLS (Algorithm 1) finds a Pareto archive (set)
P optimised w.r.t. a fitness function f . Q is a queue
initialized with random solutions. Until this queue is
empty, these candidate solutions are popped one by
one. When a solution π is obtained from the queue,
the algorithm first runs a recursive Pareto improve-
ment function (PI) at line 5. PI improves solutions
by repeatedly selecting a dominating solution from the
neighbourhood until no dominating neighbouring so-
lution can be found. If the resulting solution π is un-
dominated, k random incomparable solutions from π’s
neighbourhood are added to the queue. In existing al-
gorithms solutions are often discarded because they
are dominated by other solutions before their neigh-
bourhood has been properly explored. We prevent this
by employing a queue to only compare solutions after
they have been improved fully by PI. QPLS, like other PLS algorithms, works well when tiny changes
in an evaluated solution, i.e., the neighbourhood, can be evaluated quickly. To escape local minima
QPLS can be embedded in a genetic scheme, yielding Genetic QPLS (GQPLS) [1].

1Compressed contribution of the papers “Queued Pareto Local Search for multi-objective optimization” in PPSN XIII, pages
589-599. 2014. [1] and “Pareto local policy search for momdp planning” in 22th ESANN, pages 53-58, 2015. [2]



In addition to balancing multiple objectives, real-world problems can also involve reasoning about
future states and rewards. MOMDPs model such problems. An MOMDP is a tuple 〈S,A,P,R, µ, γ〉,
where S is a finite set of states,A is a finite set of actions, P : S×A×S → [0, 1] is a transition function
that specifies, for each state and action, the probability of reaching the next state, and R : S×A×S →
RD is the D-dimensional reward that specifies the immediate reward for each state, action and next
state. µ denotes the probability distribution over the initial states and γ is a discount factor that specifies
the relative importance of immediate rewards and future rewards. We consider the case where a solution
to an MOMDP is a deterministic stationary policy π, that is, a mapping from states to actions.

PLoPS is a planning algorithm that extends QPLS to find a Pareto front of deterministic stationary
policies for an MOMDP using new insights that allow it to require fewer evaluations and perform eval-
uations faster. Policies can be evaluated by policy evaluation (PE) as a fitness function f . PE repeatedly
applies Bellman backups to the value Vπ(s) of each state s until convergence. This update is defined
by:

Vπ
t+1(s)←

∑
s′

Pπ(s)ss′

[
Rπ(s)
ss′ + γVπ

t (s′)
]
. (1)

PLoPS searches the neighbourhood N (π) of each policy π, which we define as the set of policies that
can be made by changing one action for a single reachable state in π:

N (π) =
{
π′ ∈ Π : ∃s ∈ Sπ

[
π(s) 6= π′(s) ∧ ∀(s′ 6= s)

[
π(s′) = π′(s′)

]]}
. (2)

The PI function can be optimised for MOMDPs by quick evaluation of neighbouring policies. In [2] we
show that a policy π′ ∈ N (π) that is different from π only in performing a′ rather than a in state sc,
Pareto dominates π iff: ∑

s′

Pπ
′(sc)

scs′

[
Rπ′(sc)
scs′

+ γVπ(s′)
]
� Vπ(sc). (3)

Using (3), PLoPS can immediately identify policies as improvements by a single PE step on a single
state, skipping all non-improving policies. Additionally, using the value of π as initialisation for the
evaluation of π′ allows PLoPS to find the value more quickly than standard heuristic initialisation. As
similar policies often have similar values in large parts of the solution space, convergence is faster.
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Figure 1: Pareto front for two-objective
MO-CoG with 300 agents after one
hour.
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Figure 2: Mean and standard devia-
tion of the hypervolume on Buridan’s
Ass with three objectives as a function
of runtime.

We empirically evaluated QPLS and PLoPS and compared
them to popular alternatives. GQPLS was tested on a multi-
objective coordination graph (MO-CoG), and compared to popu-
lar alternatives SPEA2 and NSGA-II, and GSPLS, a PLS method
that does not use a queue. Figure 1 shows the Pareto fronts after
one hour. GQPLS generates solutions that Pareto dominate those
from other algorithms and have more diversity. PLoPS was tested
on Buridan’s Ass (BA), a popular benchmark MOMDP which has
a stochastic transition function and rewards in three dimensions.
It was compared to MO-MCTS and NSGA-II in figure 2. As can
be seen, PLoPS outperforms the other algorithms in time.

In conclusion, QPLS employs a queue to quickly find a pareto
set of optimal solutions (policies) outperforming popular alterna-
tives. PLoPS improves upon QPLS in the context of MOMDPs
and speeds up its policy evaluation by exploiting the structure of
policies and their values. PLoPS speeds up its policy evaluation
by exploiting the structure of policies and their values. Empirical
results show that PLoPS performs well on benchmarks compared
to popular alternatives.
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