
a Master Thesis by
Sander Latour

in the jungle of
Open Educational Resources

Survival of the fittest

TutOER
Online curriculum sequencing using genetic algorithms

based on measured learning gain.

A thesis submitted in conformity with the requirements for the degree of

MSc. in Artificial Intelligence

Martin Sander Latour
sanderlatour@gmail.com

Supervisors:

Maarten van Someren and Diederik Roijers
Informatics Institute, Faculty of Science,

Universiteit van Amsterdam
Science Park 904, 1098 XH Amsterdam

Defended on 15th of August, 2014

Contents

List of Figures iii

List of Tables v

1 Introduction 1

2 Background 3
2.1 Open Educational Resources . 3
2.2 Automatic assessment of OER Quality . 4
2.3 Curriculum Sequencing . 5

3 OER Sequencing 7
3.1 Educational context . 7
3.2 Multiple objectives of OER sequencing . 9

4 Approach 11
4.1 The Genetic Algorithm . 11
4.2 Applying the genetic algorithm . 15

5 Software 19
5.1 Interface . 19
5.2 Tutor Module . 19
5.3 GA Module . 21
5.4 Monitor Module . 23
5.5 Logging Module . 24
5.6 Bootstrap values after restart . 24

6 Simulations 25
6.1 Parameters . 25
6.2 Simulation setups . 26
6.3 General setup . 27
6.4 Results . 28

7 Experimental setup 40
7.1 Experiment . 40
7.2 Genetic algorithm setup . 43
7.3 Evaluation . 44

8 Results 46
8.1 Lesson: Rules . 47
8.2 Lesson: Intuition . 48
8.3 Lesson: Binary . 49
8.4 Lesson: Nim-sum . 50

9 Conclusion / Discussion 56

i

CONTENTS ii

Bibliography 59

A Database 63

B Nim Course Material 64
B.1 Interactive Nim Exercises . 64
B.2 Rules of the game . 64
B.3 Intuition . 65
B.4 Binary numbers . 68
B.5 Nim-Sum . 70

C Nim Test Questions 74
C.1 Rules of Nim . 74
C.2 Intuition . 74
C.3 Binary numbers . 75
C.4 Nim-Sum . 76

D Simulation Convergence Data 77

List of Figures

1.1 Setup of assessments of impact OER . 2

2.1 Lifecycle of reusable learning objects . 4

3.1 Educational context of the task . 7
3.2 Educational context of the task with student groups 9

4.1 Example of a single-point crossover operation . 14
4.2 Example of a two-point crossover operation . 14

5.1 Application screenshot - Resource . 20
5.2 User flow diagram . 20
5.3 Client-server interaction in web-based adaption of genetic algorithm 22

6.1 Cumulative regret in normal simulated environment for group 1 31
6.2 Cumulative regret in noisy simulated environment for group 1 32
6.3 Percentage seen in normal simulated environment for group 1 33
6.4 Cumulative regret in normal simulated environment for group 2 34
6.5 Cumulative regret in noisy simulated environment for group 2 35
6.6 Convergence plots . 36
6.7 Percentage chromosomes seen in normal simulated environment for group 1 37
6.8 Percentage of chromosomes seen in noisy simulated environment for group 1 38
6.9 Percentage chromosomes seen in noisy simulated environment for group 1 39

7.1 Screenshot of the exam setup with five nim game scenarios 41

8.1 Evaluations of best sequences and cumulative regret in Rules 48
8.2 Evaluations of best sequences and cumulative regret in Intuition 50
8.3 Evaluations of best sequences and cumulative regret in Binary 51
8.4 Evaluations of best sequences and cumulative regret in Nim-sum 52
8.5 Percentage of sequences evaluated . 53
8.6 Sorted number of evaluations . 54

A.1 Entity relationship schema of the database . 63

B.1 Resource 1 . 65
B.2 Resource 2 . 65
B.3 Resource 3 . 65
B.4 Resource 4 . 65
B.5 Resource 5 . 66
B.6 Resource 6 . 66
B.7 Resource 7 . 67
B.8 Resource 8 . 67
B.9 Resource 9 . 68
B.10 Resource 10 . 68

iii

LIST OF FIGURES iv

B.11 Resource 11 . 69
B.12 Resource 12 . 69
B.13 Resource 13 . 70
B.14 Resource 14 . 70
B.15 Resource 15 part 1 . 71
B.16 Resource 15 part 2 . 71
B.17 Resource 15 part 3 . 72
B.18 Resource 16 . 73

List of Tables

2.1 Different NLG values . 5

3.1 Solution space size . 8

6.1 Parameter setups . 26
6.2 Fitness values for each sequence. 27
6.3 Explanation of sequence patterns. 27

8.1 Evaluation metric scores of each population . 47
8.2 Student statistics of each lesson . 47
8.3 Frequency of exam scores for different participant segments 47
8.4 Diversity percentage at each generation . 55

D.1 Simulation convergence results in the normal environment 77
D.2 Simulation convergence results in the noisy environment 77

v

1

Introduction

Open Educational Resources (OER) are a well-studied topic in communities of scientists [58, 30, 24],
practitioners [31, 60, 59] and policy-makers [11, 44]. In addition to standard learning objects [39],
OER are free to be reused, revised (i.e. altered), remixed (i.e. combined with others) and afterwards
redistributed [26]. As a consequence the threshold for innovation of education material is lowered.
This results in a less stable quality level of the shared learning objects due to a larger diversity in
authors [56].

The selection of OER from repositories and the subsequent determination of the quality are
particularly dependent on actions of instructors. Ochoa and Duval [42] show that the size of OER
collections vary from hundreds to millions of objects depending on the type of repository. Ochoa and
Duval expect that exponential growth will occur when the repositories are capable of retaining its
productive users. Determining the quality of an exponentially growing number of open educational
resources by human effort is infeasible [14, 41, 61]. Acquiring a reliable automatic method for
assessing OER quality is thus required.

Previous approaches have predominantly focussed on proxies of OER quality. Some automat-
ically evaluated the quality of metadata [43, 51]. Cechinel et al. [14, 15] took a different approach
by predicting quality ratings of learning objects based on intrinsic metrics (e.g. number of links
in a document). Duval [23] proposed the context-dependent ranking algorithm LearnRank, where
learning objects that are used in many contexts receive a higher rank. Ochoa and Duval [41] take
the attention given to an OER as a proxy for its usefullness. A recent report from the European
Commission on the quality issue of OER identified one of the challenges to be that educational
resources of high quality are fragmented with no particular way of distinguishing them from the
other available learning objects [12]. Duval [23] states that in an ideal case empirical data of the
learning effect caused by a particular OER bootstraps its ranking. Camilleri et al. [12] refers to
impact as one of the five important aspects of OER quality. However, in the proposed automatic
mechanisms to assess OER quality, the impact a particular OER has on learning has thusfar been
mostly neglected [32]. This is an undesirable situation as the sole purpose of any learning material
is to have a positive effect on learners. This situation is particularly unsatisfactory because of the
growing demand for evidence-based teaching decisions using quantitative data [55, 37, 49, 19].

A complication with the assessment of OER quality by measured impact is that in general educa-
tional material is sequenced with other educational material before being presented to students
[10, 45]. Furthermore, the activities before and after an OER also affect its quality [23]. It is
therefore necessary to determine the quality of an OER within the sequence it is part of. As a
consequence, two issues need to be taken into account when automatically assessing OER quality.
First of all, there are many OER sequences possible, even when there are only a few OER available
for a particular topic. These sequences will require multiple evaluations before an estimate of
learning impact can be made due to the inherent noise in the domain. This experimentation clearly
does not come without cost. Each time a sequence shows to be less effective than a different one, a
learner has received a lower level of education than necessary. This turns OER quality assessment

1

CHAPTER 1. INTRODUCTION 2

in a curriculum sequencing task [2] with an exploration vs. exploitation trade-off [27]. Second of all,
repositories are constantly updated with new OER. The collection of possible sequences of OER
will therefore continue to grow during a quality assessment process. This is known as the open
corpus problem [6].

This thesis introduces and evaluates TutOER, a novel approach to automatic assessment of
OER quality. TutOER estimates the impact of a sequence of OER by measuring the knowledge
level of a student before and after the sequence is presented to the student. Figure 1.1 depicts the
situation. The curriculum sequencing task is executed by a genetic algorithm with generational
replacement and elite preservation. Sequences of OER are evolved by crossover and mutation
in order to consider better sequences over time. The survival chance of an OER sequence is
proportional to its measured impact. An additional confidence-based selection mechanism was
added to the genetic algorithm for better cost boundaries.

The TutOER system was evaluated in a newly created online course around the mathemati-
cal game Nim. The course contained four lessons through which a participant was instructed about
the game and its winning strategy. Each lesson contained a sequence of OER that was selected by
the TutOER system to be evaluated. Additionally a series of simulations were executed to explore
the behavior of the system in several theoretical situations.

T
1 OER 2 OER 3OER 1 T

2

Figure 1.1: The impact of an OER sequence is measured by a knowledge test before and after
the sequence was presented to the student. The sequence is selected by the TutOER system.

This thesis is structured as follows. Chapter 2 provides background information and related work.
Chapter 3 contains a detailed description of the task. The approach is described in Chapter 4 and
the resulting software in Chapter 5. In Chapter 6 the simulations are discussed. Chapter 7 covers
the setup of the experiment. The results of this experiment are discussed in Chapter 8. Chapter 9
concludes the findings in this thesis and provides general discussion.

2

Background

This thesis addresses a problem in the community of Open Educational Resources. It does so with
a solution from the Intelligent Tutoring Systems community, called curriculum sequencing. More
specifically, the balance between good quality estimates and the cost bad teaching is optimized as a
curriculum sequencing problem. The curriculum sequencing is executed by a genetic algorithm.
This chapter provides a background in OER, automatic assessment of the quality of OER and
curriculum sequencing. Section 2.1 describes what OER are. In Section 2.2 an overview is given on
how assessment of quality is done at the moment. Section 2.3 gives an overview of the relevant
literature in the field of curriculum sequencing.

2.1 Open Educational Resources

Several definitions of the term Open Educational Resources (OER) are given, since the term was
first coined by UNESCO in 2002 [12]. UNESCO defines OER as follows.

“The open provision of educational resources, enabled by information and communication
technologies, for consultation, use and adaptation by a community of users for non-
commercial purposes” [52]

The William and Flora Hewlett Foundation, the key funders of OER initiatives, define OER as
follows.

“OER are teaching, learning, and research resources that reside in the public domain
or have been released under an intellectual property license that permits their free
use or re-purposing by others. Open educational resources include full courses, course
materials, modules, textbooks, streaming videos, tests, software, and any other tools,
materials, or techniques used to support access to knowledge.” [3].

OER are closely related to reusable learning objects. The key difference lies in the emphasis on
openness [12]. Hilton III et al. [26] provides a framework to think about openness in OER, called
“The Four R’s of Openness”. The four R’s are reuse, revise, remix and redistribute. In the context
of OER, these can be explained as follows. OER are free to be used in any way (reuse). OER are
free to be altered in any way (revise). OER are free to be combined with other work (remix). OER
are free to be shared with others (redistribute).

Collis and Strijker [20] enumerates six stages in the lifecycle of a reusable learning object. First,
a learning object is obtained or created. Second, the learning object is labelled with metadata
information. Third, the learning object is offered, often in a learning object repository, to be
selectable for potential use. Fourth, the learning object is selected to be used in an educational
context. Fifth, the learning object is used either in a self-contained manner or in combination with
other learning objects in an educational context. Sixth, after of during the learning object is used a
decision is made whether or not to retain this learning object. Figure 2.1 depicts the cycle that
these stages form.

3

CHAPTER 2. BACKGROUND 4

Obtaining Labelling Offering

SelectingUsingRetaining

LOR

Figure 2.1: Lifecycle of reusable learning objects, as enumerated by [20]

The advent of OER lowered the threshold of creating and distributing educational material. Weller
[56] states that the resulting diversity of authors will cause a less stable level of quality. However, a
lot is expected from these authors. The human instructor plays an important role in almost all
of the mentioned stages in Figure 2.1. In particular, the human instructor is responsible in most
systems for quality assessment. According to [12] quality assurance ranges from strict top-down
controlled production processes to peer-review and everything in between.

However, according to [42] the number of OER in learning object repositories vary from hun-
dreds to millions of objects. The growth of these repositories is still linear in the number of authors
[42]. However, Ochoa and Duval expect that this growth will become exponential when authors are
better retained by the repositories. Determining the quality of an exponentially growing number of
open educational resources by human effort is infeasible [14, 41, 61]. As a result, there is a growing
interest in automatic assessments of OER quality.

2.2 Automatic assessment of OER Quality

One approach focuses on the quality of the metadata of the learning object [43, 51], as a proxy for
the quality of the object itself. A problem with this approach is that metadata can be inaccurate
[13] and incomplete [48]. A different approach is to automatically assess the quality of learning
objects based on intrinsic metrics, such as the number of links in a learning object. Cechinel et al.
[14] managed to find statistical profiles of different quality labels by comparing intrinsic metrics
of good and poor learning objects in the MERLOT repository. Duval [23] however states that
the quality of a learning object is context-dependent and intrinsically subjective. As examples of
context Duval mentions a.o. learning goal, available time and educational level. Duval proposes the
context-dependent ranking algorithm LearnRank, in which learning objects that are used in many
contexts receive a higher rank. In [41] the “use of contextualized attention metadata for ranking
and recommending learning objects” is proposed, where the attention given to a learning object by
a student or a teacher within a certain context is considered to be a proxy for the usefulness of
the object in that context. Duval however also mentions in [23] that “In an ideal world, we would
actually bootstrap and steer this process [of establishing the LearnRank] through empirical data
on the learning effect that specific objects have actually caused (or helped to realise) in specific
contexts ...”. According to [32] the effect of a learning object on actual learning is underrepresented
in the research on learning objects.

In a recent report from the European Commission, quality of Open Educational Resources had five
aspects: efficacy, impact, availability, accuracy and excellence [12]. The aspect of impact referred
to the extend to which an object or concept proves effective. However, little is said in Camilleri
et al. [12] about methods that would measure this impact. Camilleri et al. further state as one of
the challenges that educational resources of high quality are fragmented with no particular way of

CHAPTER 2. BACKGROUND 5

Table 2.1: Different NLG values

C1 C2 NLG
0 0 0
0 1/3

1/3
0 2/3

2/3
0 1 1

C1 C2 NLG
1/3 0 −1/2
1/3

1/3 0
1/3

2/3
1/2

1/3 1 1

C1 C2 NLG
2/3 0 −2
2/3

1/3 −1
2/3

2/3 0
2/3 1 1

distinguishing them from the other available learning objects. They recommend creating specialised
directories where exclusive lists of repositories of high-quality content are maintained. It is however
not stated how these high-quality repositories could incorporate impact in their quality assessment.

This thesis presents work that assesses OER quality by the impact it has on learning. This
impact is measured by assessing the competence level before and after the OER is presented. The
normalized learning gain (NLG) is used to express the impact the OER has on the competence
level. The NLG metric is a widely adopted measure of student learning. The main advantage
of NLG is that student learning is measured irrespective of the student’s incoming competence
[18]. The NLG metric is calculated using formula (2.1), where C1 and C2 denote the pre-test and
post-test scores respectively. The value 1 is assumed to be the maximum score of an assessment.
Table 2.1 shows the NLG value for a variety of parameter values. The normalized learning gain is
essentially a normalized distance metric. Thus, any linear function expressing competence with
a known maximum value is applicable to C1 and C2. The experiments performed for this thesis
use the ratio of correct answers. Using the NLG metric, sequences of OER can be evaluated by
comparison of the assessment score before and after presentation.

nlg(C1, C2) =
C2 − C1

1− C1
(2.1)

2.3 Curriculum Sequencing

Curriculum sequencing concerns generating a sequence of teaching operations that is optimal for an
individual learning [8]. The level on which this takes place ranges from course sequencing to content
sequencing. Curriculum sequencing is an established part of the larger field of intelligent tutoring
systems [9]. Vanlehn [53] provides an introduction into intelligent tutoring systems. Although
most intelligent tutoring systems used to be supported by extensive and explicit knowledge engi-
neering, data-driven systems are now emerging [33]. Within and around the intelligent tutotoring
systems community there have been different technologies involved with curriculum sequencing tasks.

The field of Adaptive Hypermedia Systems (AHS) explores adaptive presentation and adaptive
navigation in hypertext documents [7]. Many existing AHS require the set of documents to be
known in advance, referred to as a closed corpus [6]. According to Brusilovsky and Henze, these
documents are annotated with metadata and linked to ontologies before presented to students.
Based on this additional information adaptation takes place to cater for individual needs. Examples
of such systems [1, 34] are used in formal education as authoring tool. Due to the closed corpus
assumption, this systems are not useful in dealing with open educational resources [6]. Brusilovsky
and Henze further state that AHS should move to work with an open corpus.

A technique that is much more suited for the open corpus task is collaborative filtering [36].
Together with content-based filtering and hybrid models, it is one of the three main recommendation
techniques [54]. Collaborative filtering bases recommendations on actions of similar people. Content-
based filtering compares content instead of people and bases recommendations on that. Hybrid
models combine multiple recommender systems. [36] provides an extensive review of recommender
systems using in technology-enhanced learning. A recent example that was published after the
review is [54]. Verbert et al. [54] recommends learning designs to teachers based on patterns of

CHAPTER 2. BACKGROUND 6

existing learning designs of peers. Furthermore, resources are recommended within these designs,
based on students’ usage data.

A Markov Decision Processes are a branch of reinforcement learners that indirectly generate
sequences. [18] presents a conversational physics tutor that makes micro-decisions about whether
to tell or elicit a certain fact. Features from both the conversation and the student performance are
used. As a result, a sequence of pedagogical actions is created.

Another popular approach to curriculum sequencing is evolutionary computing. Al-Muhaideb and
Menai [2] provides an extensive overview of this literature. The main approach is taking curriculum
sequencing to be a constraint problem. Several systems include a term that expresses how well a
particular solution fits the pre-determined prerequisite structure of the learning objects [47, 17, 46].
Other work in this field includes a term that expresses how smooth the transitions are between
learning objects in difficulty [28, 47, 16, 29] or how well their difficulty matches the compentency
level of the student [47, 16, 17, 46, 29]. De-Marcos et al. [22], de Marcos et al. [21] redefines the
sequencing problem to be a permutation problem and applies both a genetic algorithm and a
particle swarm optimization. The sequencing done tries to match compentencies the students has or
desires with compentency-related metadata of the learning objects. Both evolutionary algorithms
work, but particle swarm optimization outperforms the genetic algorithm.

The proposed work in this thesis applies the genetic algorithm with many of the same features as
ealier systems, such as generational replacement, integer-encoding for chromosomes and elitism.
However, unlike all mentioned work, the approach taken in this thesis uses the normalized learning
gain caused by the sequence to be its fitness. Furthermore, the learning objects are treated as black
boxes in this thesis. No metadata or expert-driven ontologies are used. The only thing known
about the learning objects, within the context of this thesis, is their topic.

3

OER Sequencing

The impact a sequence of OER has on learning is not known within OER repositories. Any system
that would want to present the optimal sequence to a learner would have to empirically discover
this impact. In the process of this discovery, suboptimal sequences are presented to a learner,
which could reduce learning. The goal of this thesis is to find the optimal sequence of OER while
minimizing the negative consequences of the search process. The rest of this chapter discusses this
in more detail.

3.1 Educational context

We consider OER sequencing within a lesson of an online course. The course focuses on a particular
topic and is split up into various lessons that cover a concept or knowledge area that is required for
understanding the course topic. The lesson is taught by an automatic tutor through a sequence
of educational material that is presented to an individual student. Several educational resources
are available for this lesson, from which the tutor needs to make a selection. The result of this
selection is an ordered sequence of educational resources that are consecutively presented. At the
beginning and at the end of each lesson there is an assessment, refered to as the pre-test and
post-test respectively. These assessments measure the relevant competence level before and after
the presented sequence. The situation is depicted in Figure 3.1. The task central to this thesis is to
find the optimal sequence of resources.

Figure 3.1: The sequencing task takes place within a lesson of a course.

There is no pre-defined length of the sequences for each lesson. Only one educational resource could
be enough to explain it. The lesson might also require multiple resources. However, the lengths are
restricted to a pre-defined lower and upper bounds. Additionally, to simplify the problem slightly
more, the sequence must not contain an educational resource multiple times. This is partly to
reduce the number of possibilities and partly because the time span between the duplicates would
be rather short. In this short time span, it is unlikely that repetition would be useful.

7

CHAPTER 3. OER SEQUENCING 8

3.1.1 Quality of OER

The quality of a particular sequence of educational material is determined by the impact it has
on learning. The impact is defined as the measured normalized learning gain between the pre-
test and the post-test, as given by Equation (2.1). A sequence is optimal when the measured
normalized learning gain is maximized. The search task is thus straightforward. Namely finding the
sequence with maximum expected impact out of all possible sequences. Equation (3.1) describes
this mathematically, where R denotes the set of all educational resources available for that lesson,
C1 and C2 denote the normalized pre-test and post-test scores respectively, a and b denote the
minimum and maximum length of a sequence respectively and S denotes the set of all possible
sequences for that lesson.

arg max
s∈S

[
E[nlg(C1, C2

s)]
]
, S =

b⋃
k=a

Rk (3.1)

3.1.2 Solution space

The number of sequences of educational resources that need to be considered can increase quickly.
A sequence of three slots can be instantiated from a collection of five resources in 60 (5 ∗ 4 ∗ 3)
different ways. When the collection is twice as large, in total 720 sequences would be possible. The
number of possible sequence instantiations is given by the k-permutation of n elements, where k is
the number of slots to instantiate and n the number of elements to draw from.

Apart from the number of different instantiations, sequences have a variable length. The to-
tal number of possible sequences is thus the sum of all possible instantiations of sequences of all
possible lengths. This results in Equation 3.2, where |R| denotes the number of resources for the
lesson, a and b denote the minimum and maximum number of resources in the sequence respectively
and |S| denotes the number of possible sequences. The equation is essentially the formula for the
number of k-permutations of n given by n!

(n−k)! summed for all possible values of k. Table 3.1 shows

the outcome of this equation for various values of |R|, a and b.

|S| =
b∑

k=a

|R|!
(|R| − k)!

, a ≤ b ≤ |R| (3.2)

|R| a b |S|
3 1 3 15
4 1 3 40
5 1 3 85

|R| a b |S|
5 1 4 205
5 1 5 325
5 2 5 320

|R| a b |S|
10 1 3 820
10 1 4 5860
10 2 4 5850

|R| a b |S|
10 3 5 36000
10 1 10 9.864.100
10 5 10 9.858.240

Table 3.1: Solution space sizes calculated for a few parameter values using Equation (3.2). Param-
eters |R|, a and b represent the number of resources, the minimum length of a sequence and the
maximum length of a sequence respectively. |S| represents the number of possible sequences, given
the parameters.

3.1.3 Student Groups

Within the scope of this thesis, the sequences are not optimized for every individual student.
Instead, each student is assigned to a student group, for which the sequence of educational material
is optimized. Students are assigned to the student group based on their normalized pre-test score.
The score is descretized in a low and high value. Specifically, students who have less than half the
questions correct are assigned to the low student group and the others are assigned to the high
student group. The optimal sequence of education material must be found for each student group.
In order words, students who know little about the topic might receive different material than
students who know a lot. This results in a new situation, which is depicted by Figure 3.2.

CHAPTER 3. OER SEQUENCING 9

Figure 3.2: The sequencing task is performed separately for each student group.

There are several other features on which students could have been divided even further into more
specific groups. Learning style, gender and age are not uncommon feature candidates. These are
not used in this thesis for mainly two reasons. First, determining the values for these character-
istics can be difficult and unreliable in a web context. Second, this would result in more groups.
Each additional group requires new students in order to find the optimal sequence in that group.
Acquiring many students is not possible within this thesis.

The coarse division of students in groups could cause a large diversity of students within each group.
That means that the evaluation of a sequence by a student is not necessarily representative for the
average evaluation. On top of that, the assessment of impact will be noisy. For example because
students might be distracted during one of the assessments. That means that sequences must be
evaluated multiple times in order to acquire a better estimate.

Although the optimal sequence is determined per student group, they are not entirely independent.
This becomes apparent through an analogy. A teacher that teaches different cohorts will try to
optimize his teaching for each separate group. If however the teacher would observe that a particular
approach works really well for one group, the teacher might try it out on other groups as well.

3.2 Multiple objectives of OER sequencing

Evaluating the optimality of a sequence comes with a cost. Each evaluation requires a new student
and there are only limited students available. Therefore the number of students required to find the
optimal sequence need to be minized. Furthermore, presenting a less-than-optimal sequence to a
student could limit the amount of learning. That is something one wants to avoid in an educational
setting.

The “damage” done to the student’s learning can be expressed in regret. The definition of regret
is the difference in the reward received between performing the optimal action and the current
action. In other words how much reward is missed by not choosing the optimal action. In the
context of this thesis, regret is the learning gain that is missed by not presenting the optimal sequence.

However, we do not know beforehand what the optimal sequence is. The process of search-
ing for the optimal sequence will result in evaluations of less-than-optimal sequences. Recall that
these evaluations involve actual students. Thus, the regret built up during this search process,
known as the online regret, needs to be minimized. Furthermore recall that observations of the
sequence’s optimality are noisy. Multiple evaluations are needed for accurate estimates. This results
in two objectives, namely better estimates and minimizing online regret.

This situation is familiar to many fields and is known as the exploration vs. exploitation trade-off
[27]. An often used example is the n-armed bandit problem [50] where a casino offers n different

CHAPTER 3. OER SEQUENCING 10

slot machines (a.k.a. one-armed bandits) to play. A player would want to optimize the total
amount of money earned and is therefore looking for the slot machine that has the highest pay-off.
It is tempting to stay with a slot machine that gives the highest return you have seen so far
(exploitation), but it is important to also try out other slot machines to see if they perform even
better (exploration). This can be applied to OER sequencing by aligning the bandits with sequences
of learning objects and the pay-off with learning gain.

4

Approach

As described in Chapter 3, the goal of this thesis is to find the optimal sequence of OER while
minimizing online regret. The TutOER system needs to select a sequence for each student within a
lesson. This chapter describes how the system does this. The approach uses a genetic algorithm to
search in a more structured manner through the space of possible sequences. The genetic algorithm
paradigm is introduced in Section 4.1. Section 4.2 discusses how this paradigm is applied to this
thesis.

4.1 The Genetic Algorithm

This section provides a brief introduction into genetic algoritms. The purpose of this section is
to establish a shared understanding of the standard setup. For a more in-depth introduction, the
reader is referred to [25].

The genetic algorithm [27] is a part of a family of search algorithms called evolutionary com-
puting. The technique draws inspiration from Darwinian evolution and natural selection. In genetic
algorithms, a population of individuals evolves over multiple generations to better perform on some
metric. These individuals all have a set of traits that influence their performance. For example,
a bird could have traits like a long tail or bright colors. Traits are caused by certain genes. A
particular configuration of genes is called a chromosome. Individuals that perform better than
others have a higher chance of survival. The new generation contains the offspring of the individuals
that survived. The offspring inherits the chromosomes of their parents. That way, traits that have a
positive influence on performance have a higher chance of ending up in new individuals. Surviving
individuals pair up with others to form a set of two parents. The resulting offspring inherits a
combination of the chromosomes of both parents. Usually two parents form two new individuals.
This application of the survival of the fittest results in more individuals with successful traits and
less individuals with unsuccessful traits.

The peppered moth, the most cited example of Darwinian evolution [35], illustrates this per-
fectly. The peppered moth rests during the day on the trunk of particular trees. At that moment
birds pray on the moths. The color of the peppered moth is originally light gray. This trait
camouflages them fairly well against the light bark of the trees. In other words, the fitness of these
white moths is higher than moths of a different color. As a result most peppered moths had a light
color. However, that all changed during the industrial revolution. The industrial revolution caused
polution in the air that blackend the bark of the trees. As a result, the white peppered moths were
easily spotted by praying birds. A variation of the peppered moth, with a dark color, suddenly
had a better camouflage against the dark trunks. The black-bodied peppered moth produced more
offspring because their increased chance of survival. As a result the occurence of dark peppered
moths rose significantly. In modern times, the air is much cleaner and the color of the bark of
the trees became light again. As a result the dark peppered moths were at a disadvantage. The
frequency of light peppered moths rose to be the large majority once again.

11

CHAPTER 4. APPROACH 12

New variations like the dark peppered moths, are caused by genetic mutations. A mutation
is a copying error of the chromosome during inheritence. The mutated chromosome causes traits
that could benefit an individual’s chance of survival. In that case the mutated chromosome will
occur more often in new generations of the population. As was the case in the example of the
peppered moths.

The genetic algorithm uses the same approach to find optimal solutions in a large space of
possibilities. In our case, finding the optimal sequence of OER. A particular application of this
algorithm designs counterparts of the components of the natural selection mechanism. The com-
ponents that need to be designed are briefly discussed in the rest of this section. The standard
genetic algorithm follows roughly the following steps [25].

Genetic Algorithm Outline

1. Initialization

2. Evaluation of each candidate

3. Repeat until termination condition is satisfied:

a) Parent selection

b) Recombination of parent pairs

c) Mutation of the resulting offspring

d) Evaluation of each candidate

e) Survivor selection

4.1.1 Representation of the domain

The phenotype is the collection of properties of an individual, such as a long tail or color. The
genotype is the genetic information that causes those properties. In order words, the chromosome
containing particular genes represents the aforementioned properties in genetic terms. This distinc-
tion is important for genetic algorithms, as it is often the case that there is a translation necessary
between the two. Arguably, one of the first tasks in applying a genetic algorithm is finding a
translation of your solution space to a genetic encoding.

A commonly used encoding is the binary encoding, where chromosomes are encoded as strings of
1’s and 0’s. This encoding allows for simple mutation and crossover operators that work on the bit
level. However, for many problem types this can result in invalid individuals. Other encodings have
been developed to improve this.

For example, suppose we want a genetic algorithm to work on the travelling salesman prob-
lem. In this problem, the salesman needs to find the shortest route through all cities. Each solution
to this problem would be some travelling plan that enumerates cities in the order that the saleman
should visit them (phenotype). This could be encoded as an ordered list of numbers, where each
number represents a city (genotype). This encoding is known as the integer or permutation encoding.
In the field of curriculum sequencing, the permutation encoding is also widely used [2].

4.1.2 Candidate evaluation

Individuals, carrying a particular chromosome, are exposed to the environment. This environment
determines the chance of survival of the individuals, and thereby of their chromosomes. In the
peppered moth example, the bark of the tree’s trunk determines the survival chance of each
individual moth. This survival chance, due to how well the individual fits its environment, is
expressed by the fitness value. In more abstract terms, the fitness value expresses how good the
found solution is. The fitness function can calculate these values for an arbitrary individual.

CHAPTER 4. APPROACH 13

The example of the travelling salesmen has an obvious candidate. The fitness function could
measure the distance travelled in the proposed travelling plan. Although in this particular example,
you would want the distance to negatively correspond to the survival chance.

The selection of individuals to evaluate is done uniformly in the basic implementation. In domains
where the fitness function is deterministic, each individual is evaluated once. In more noisy domains
there is a larger number of evaluations that can be divided over the individuals uniformly in each
generation.

4.1.3 Population

A population of individuals goes through several generations. Each generation is a new step in
the search for the optimal solution. The initialization of a population is usually done by random
sampling of chromosomes for its individuals. An important property is the number of individuals
in each generation. Usually this number is fixed to one number, but it can also vary. The number
of individuals is important as it determines the capacity for variation in one generation. The
population is however a multiset. This means chromosomes can be contained by multiple individuals.
Therefore it is also relevant to look at the diversity in the generation.

The standard implementation of a genetic algorithm needs to terminate. One obvious candi-
date for a termination condition is when the algorithm found an optimally performing individual.
In other words, when the fitness of the individual is, within a small range of, the maximum possible
value. However, there are no guarantees that the genetic algorithm would reach this point. Other
termination conditions can be added to deal with this. One example is to stop after a fixed number
of evaluations.

4.1.4 Evolution

Searching occurs in genetic algorithms by means of evolution. There are three important stages
in this evolution. First parent pairs are selected from the survivors. The chromosomes of these
parents are then recombined into two new chromosomes. After the recombination, mutation may
take place on the resulting chromosomes. At the end, the two new chromosomes end up in the new
generation. The three stages are further clarified in the next subsections.

4.1.4.1 Parent Selection

When all fitness evaluations have been made, some chromosomes will be selected to become a
parent. Parents are selected in pairs, in order to let their chromosomes recombinate. This selection
of parents is at least based on the fitness of the chromosomes. However, also other features such
as a chromosome’s age may influence the selection. There are also various ways in using these
values for selection. One is tournament selection, where individuals compete against each other
and the one with the highest fitness wins. Another is ranking selection, where the probability of
a chromosome being selected is proportionate to its rank in fitness values. A common selection
method is roulette wheel selection or fitness-based selection. This is a sampling method where the
fitness value is proportionate to the probability of being sampled. The roulette wheel is a circle
divided in a number of segments. Each segment corresponds to an individual. The size of the
segment is proportionate to the fitness value of the individual. A random position on the circle is
chosen. The segment that contains this position corresponds to the individual selected.

4.1.4.2 Recombination

Recombination is responsible for combining information from two chromosomes. This recombination
occurs by a crossover operator. There many different possible crossover operations. Two common
ones are one-point crossover and two-point crossover. The one-point crossover splits the chromosomes
at the same random point. The resulting four halfs are recombined in the alternative way, while
maintaining their position in the chromosome. Figure 4.1 illustrates the splitting of two parent
chromosomes and their recombination into two child chromosomes.

CHAPTER 4. APPROACH 14

Parent B

Child 2

Child 1

Parent A

Figure 4.1: Example of a single-point crossover operation

The two-point crossover splits the chromosomes at two points. The segment of genes between the
two split points in both both chromosomes is swapped. Figure 4.2 illustrates the application of the
two-point crossover.

Figure 4.2: Example of a two-point crossover operation

4.1.4.3 Mutation

Selection and recombination steer the search towards the part of the search space that appears to be
most promising. As a result, parts of the search space might never be reached and evaluated. There
is no guarantee that this steering will converge to an optimal solution. This is especially true when
the initial population does not hold the necessary variation. Therefore, most genetic algorithm
implementations also include mutation. The mutation operator introduces random changes to
chromosomes when passed through from parents to offspring. In the standard binary encoding of
genes in a chromosome, the basic mutation operator flips a random bit. The permutation encoding
facilitates a swap mutation, where to random positions in the chromosome are swapped.

Although mutations can be vital for performance, it is still a disruption. Too much mutation will
prevent convergence. Mutation is therefore usually only applied with a very low probability. The
mutation operator is applied after recombination took place.

4.1.4.4 Survivor selection

Populations often have a fixed size. The newly created offspring together with the existing population
forms a group of candidates that exceeds this size. In the survivor selection step, the members
of the new generation are selected from these candidates. Unlike the parent selection, which is
stochastic, the survivor selection is often deterministic. An example selection method is to just
take the top n chromosomes in order of their fitness. Another common method is generational
replacement. In this method, the chromosomes in the generation are completely replaced by their
offspring.

CHAPTER 4. APPROACH 15

4.1.5 Extensions

Several extensions have been proposed to the standard genetic algorithm. Two of them are relevant
for this thesis. They will be briefly explained.

4.1.5.1 Elite preservation

Although mutation ensures that every chromosome is theoretically reachable. However, the
probability of this happening might be very small. In a finite number of generations there is
no guarantee that the optimal solution will be found. There is furthermore no guarantee that
good solutions will be kept in the population. Elitism, or elite preservation, ensures that the
n best individuals of each generation are transferred to the next one. Elite individuals are not
subjected to crossovers or mutation. Nor are they dependant on stochastic sampling. The number
of elite individuals must be kept small. Otherwise the genetic algorithm will no longer have enough
individuals to evolve.

4.1.5.2 Island model

In the island model, a population is split up in separate subpopulations, called demes. These demes
evolve independantly from each other. However, periodically communication can occur through
migration of individuals. The approach is a form of parallelisation and works particularly well when
a problem consists of linearly separable subproblems [57].

According to [40], the island model is controlled by four parameters. These are the topology,
the migration interval, the migration scheme and the migration size. The topology determines
which demes are connected, which allows for migration. The migration interval determines the
number of generations between a migration. The migration scheme determines which individual is
picked from the source deme: the worst, the best or a random individual. It also determines which
individual is replaced at the target deme: the worst, the best or a random individual. Replacement
only occurs if the migrating individual has a higher fitness. The migration size determines how
many individuals are exchanged during each migration. For a more extensive analysis of the island
model in genetic algorithms the reader is referred to [38] and [57].

4.2 Applying the genetic algorithm

This section describes the way in which the task described in Chapter 3 is modeled using ge-
netic algorithms. Each section discusses an important aspect of the modeling: representation
(Section 4.2.1), initialization (Section 4.2.2.1), termination conditions (Section 4.2.2.2), fitness
(Section 4.2.3) and parent selection, variation operators and survivor selection (Section 4.2.4). The
applied island model to support for related student groups is described in Section 4.2.5.

4.2.1 Representation of the domain

The permutation encoding is used to represent each sequence. However, unlike most curriculum
sequencing approaches [2], the chromosomes have variable length. The variable length is necessary
because the OER sequences have variable length as well. Chromosomes can thus also be partial
permutations, where not all OER are contained in the sequence.

4.2.2 Population

4.2.2.1 Initialization

The population is not initialized purely randomly. Instead, the first generation contains only
sequences with exactly one gene. This is to introduce a bias towards smaller sequences. The
individuals are generated according to the following steps:

1. For all resources in pool:

CHAPTER 4. APPROACH 16

a) If population is full, stop

b) Else, add an individual with the chromosome that contains only that resource.

2. While there is room left in the population:

a) Select a resource according to some probability density function

b) Add an individual with the chromosome that contains only that resource

The probability density function (PDF) refered to in step 2a is a uniform distribution by default,
but can also represent apriori weights of resources.

4.2.2.2 Termination

Given the inherent noise in the fitness values, the algorithm should not stop before the fitness of
each possible1 chromosome is determined with some certainty. That would seem to lead to a valid
point of termination when all chromosomes are evaluated with enough certainty. However, the pool
of resources is assumed to grow (i.e. new educational resources are made available) and each time
a new resource is introduced it theoretically needs to be tried out in every combination with the
already existing resources before the valid termination point would be reached. This would mean
that the algorithm would never terminate, as it should wait for any new resources to arrive. If it is
vital that the algorithm finishes, a practical approach could be to stop if the fitness of one or more
individuals is within a small margin of the optimal value. Provided an optimal value can be defined.

The application presented in this thesis does not require the genetic algorithm to terminate.
The web-based variation to the algorithm described in Section 5.3.1 ensures that computation only
happens on a event basis. Furthermore, due to the nature of the application, it is not as interesting
to have the best solution at the end as it is to select the best known solution at each point that
an individual is tested. Naturally a exploration-explotation trade-off applies where occassionally
individuals need to be tried out that could both be better or worse. So instead of termination,
moving towards convergence is important.

4.2.3 Candidate evaluation

4.2.3.1 Fitness function

Learning objects are often not a perfect fit. They might explain too much or too little about some
context. On top of that, it is not that well indexed in terms of the exact type of presentation that
they have. Thus, what we want is a sequence of imperfect learning objects that together maximize
the educational performance. We do not know what the order should be, given that the order is a
matter of pedagogy and not knowledge engineering. And even if we were able to fully specify the
right pedagogical order for each type of student perfectly. We would still not have the required
information about these learning objects, or the information might be wrong. Thus, we are learning
a sequence of black boxes of which we only know that they attempt to teach a particular knowledge
component.

The only way we can measure the value of a particular sequence for a group of students, and
thereby assess its fitness, is to look at the gain in knowledge as observed by the post-test. More
precisely the fitness function used in this thesis is the normalized learning gain between the pre-test

and post-test for a given knowledge component, given by C2−C1

1−C1 where C1 and C2 represent the
percentage of correct answers on the pre-test and post-test respectively of the student.

The observed fitness is probably not the same each time a chromosome is evaluated. This is
due to the fact that students are not identical, especially not given the coarse division into student
groups. A solution is to see the fitness as a stochastic variable that has some noise on top of the
“true” value. In order to obtain an estimate of this true value, several approaches are possible. The
most simple one is to take multiple samples and average over them. However, in this case, taking

1i.e. all possible sequences given the constraints on length and the uniqueness requirement

CHAPTER 4. APPROACH 17

samples must be considered to be expensive. The approach taken must therefore try to minimize
the number of samples while maximizing the certainty of the fitness value. Which is why Upper
Confidence Bound selection was applied in this thesis, as described in Section 4.2.3.2.

4.2.3.2 UCB Selection

In this thesis, the Upper Confidence Bound (UCB) selection algorithm is used to determine which
of the individuals will be evaluated. In particular the UCB-1 [4] algorithm is used. In UCB-1, first
every individual is evaluated once. After this has been done, the individual is evaluated for which
equation (4.1) is maximized, where xi denotes the average fitness of the individual, ni denotes
the number of times the individual has been evaluated so far and n denotes the overal number of
evaluations that occured.

xi +

√
2 lnn

ni
(4.1)

UCB-1 is proven in [4] to logarithmically bound the regret, which ensures that a suboptimal
individual is selected logarithmically less often than the optimal individual. It is important to
note that UCB-1 can only consider the individuals that are present in the current generation of
the population for which the evaluation occurs. This means that there is some interplay between
the UCB-1 mechanism and the selection mechanism of the genetic algorithm, where the genetic
algorithm is responsible for searching through the solution space efficiently and the UCB-1 algorithm
is responsible for reducing the regret.

4.2.4 Evolution

4.2.4.1 Parent selection

Parents are selected in pairs using roulette wheel selection. If the number of individuals in the
population is odd, there will be one parent remaining after all pairs have been formed. That
parent’s chromosome is then added to the new generation as its own offspring.

4.2.4.2 Combination operator

When two parents are matched to create offspring, their chromosome’s are combined using a
crossover operation. The resulting chromosome is placed in a new individual. There are two
crossover operations implemented for this thesis: one-point crossover and append crossover.

One-point crossover The one-point crossover operation is typically implemented by picking
one point for both parents to split, after which the four halfs are recombined into two new children.
The individuals in this thesis, however, can vary in length. That means that crossover points could
be selected that do not exist in both parents. Naturally one could restrict the set of valid crossover
points to be within the boundaries of both chromosomes. However, that would also limit valid
chromosomes, even though they can be achieved by combining both parent chromosomes.

In this thesis, the one-point crossover operator is implemented differently. Instead of picking
one point for both parents at once, one crossover point in each parent is randomly picked indepen-
dent from the other. These two crossover points then split up both parents in two pieces each,
allowing for the formation of two new children after recombination. The implementation ensures
that only valid children are the result of the operation. When no valid children can be created, the
one-point crossover is skipped and the append crossover is attempted.

Append crossover The append crossover was designed for the edge case where two parents
cannot be split up and recombined into two new valid children. For example when one or both
parents have a chromosome with one gene, which is impossible to split up. The append crossover
operator simply appends one parent after the other. The two ways to do this result in two children.

CHAPTER 4. APPROACH 18

4.2.4.3 Mutation operator

In this thesis three different mutation operators have been applied: swap mutation, addition
mutation, deletion mutation.

Swap mutation The standard swap mutation for permutations is used. The chromosome needs
to contain at least two genes in order to be applied to this mutation. If this is not the case, a
different mutation is attempted.

Addition mutation The chromosome applied to the addition mutation operator will be appended
with a new gene from the gene pool. The gene that is added must not already exist in the
chromosome. If no gene can be selected from the pool that satisfies this constraint, a different
mutation is attempted.

Deletion mutation The deletion mutation operation deletes a random gene from the chromosome,
resulting in a shift in position of the genes after it. The resulting chromosome must have at least
one gene left. If this is not possible, a different mutation is attempted.

4.2.4.4 Survivor selection

This thesis implements generational replacement with elite preservation, which are commonly used
strategies for survivor selection in the curriculum sequencing domain [2].

4.2.5 Island model

Section 3.1.3 described how the sequencing task is done per student group and per knowledge
component. Each combination is represented as separate populations. However, the populations
that represent the same knowledge component but different student groups co-evolve.

The island model was used to model exchange of information between related populations. The
migration scheme is set to migrate the best individual of the source population and replace the
worst individual in the target population. This occurs at every new generation. The migrated
individuals are copies, and do not change the occurrence of the migrated chromosomes in the source
population. The topology links populations of the same knowledge component together. Only one
individual is migrated per generation.

Important to note is that all other actions of the genetic algorithm in each population are still
independent, meaning that the populations can also evolve at different speeds. As a consequence, a
population that evolves really slowly will continue to migrate the same individual towards the target
population. Even if it turned out not to work well. To counter this, the migrating individual of the
source population competes with the worst individual in the target population through roulette
selection. If the fitness of the migrating individual is worse than the worst individual in the target
population, the replacement is not likely to proceed.

5

Software

In order to test the approach described in Chapter 4, the TutOER system was built1. TutOER
is a web-based tutor that optimizes the sequence of OER to teach a concept to students. The
two main software modules are the Tutor Module and the Genetic Algorithm (GA) Module. The
latter implements the genetic algorithm approach chosen in this thesis in order to assist the Tutor
module in selecting educational material. The software is web-based for mainly two reasons. First,
it will make it easier to have people interact with the system, which is important when one needs
to collect large amounts of data. Second, given the inherit intention of OER to be distributable,
most OER are created for a web environment.

This chapter is structured as follows. Section 5.1 will describe the interface of the TutOER
system. The Tutor Module is covered in Section 5.2. In Section 5.3, the implementation of the
genetic algorithm approach in the GA Module will be discussed. Section 5.4 describes the Monitor
Module, which allows for the analysis of the live system. The Logging Module is discussed in
Section 5.5. The database schema of the system is shown in Appendix A.

5.1 Interface

The TutOER software provides an online interface for students2 which presents the educational
material and assessments for each knowledge component to the student. The interface can be
seen in Figure 5.1 and consist of two main boxes. The top box indicates how far the student is in
the course, which is based on the knowledge component the student is currently in. The middle
box contains either the educational resource or the test questions. The middle box also always
contains a button through which the user can advance to the next page. Section 5.2.1 describes the
user flow through the system, which determines the result of clicking the button. The educational
content is displayed in an iframe, which means that the content could also be an independant online
resource. Most open educational resources are of that nature at the moment. That being said,
the experiments described in Chapter 7 only utilize material that was made by the author and
specifically designed to fit within the layout of the TutOER interface.

5.2 Tutor Module

The tutor module contains all program logic and database models related to the educational task.
It handles all interactions with the student and connects with the genetic algorithm module. This
module is responsible for implementing the user flow, through which the student is guided towards
the end of the course. This flow is described in Section 5.2.1.

1Software can be found on https://github.com/mslatour/oertutor
2The term student is used in the broadest sense: anyone who wants to learn something

19

https://github.com/mslatour/oertutor

CHAPTER 5. SOFTWARE 20

Figure 5.1: Screenshot of the application presenting an education resource.

5.2.1 User Flow

The software enforces a specific flow through the system on the student. This flow is divided up in
phases. The path between the phases is shown in Figure 5.2. The button described in Section 5.1
almost always triggers a change in phase, as denoted by the arrows in the figure. The rest of this
section explains the different phases and the exact effect of clicking on that button in each phase.

Figure 5.2: Diagram depicting the phases that a user goes through and the path between them.

New A student that is new to the system is shown an explanation of the course. Provided a
student does not clear the stored cookie in the browser or switches browsers altogether, this phase
only occurs once in the interaction between the student and the software. A button is shown to
start the course, which would put the student in the introduction phase.

Introduction The introduction phase presents the student with the description of the current
knowledge component. The knowledge component is either the first one, or the knowledge component
set in later phases. The introduction phase is encountered for each knowledge component, provided
the student finishes the course. A button is shown to move to the pre-test phase.

Pre-test In the pre-test phase the knowledge of the student on the current knowledge component
is assessed. It shows all the questions at the same time underneath each other on one page. The
student is not forced to answer the questions by form validation or otherwise which refuses to

CHAPTER 5. SOFTWARE 21

submit a test without an answer for each question. The button shown at the buttom submits the
answers given to be graded. Based on the score, the student will either move on to the sequence
phase or, if the score is perfect, the student will skip the current knowledge component. If the
knowledge component is skipped, the student will either be sent to the introduction phase of the
next knowledge component or, if this was the last knowledge component, move forward to the exam
phase.

Sequence The student in the sequence phase is presented the sequence of educational material
that has been selected by the system3. Sequences can contain more than one educational resource.
In that case, only one resource will be shown at a time, starting with the first of the sequence. A
button is displayed which will bring the student to the next sequence, if there is one. If the student
has reached the end of the sequence, the button will sent the student to the post-test phase.

Post-test The post-test phase displays the questions of the post-test for the current knowledge
component. The appearance, the questions and the button function is identical to the situation in
the pre-test phase. When the answers are graded, the normalized learning gain is calculated to feed
back into the genetic algorithm as fitness value. If there is a next knowledge component in the
course, the student is sent to the introduction phase of that knowledge component. If this was the
last knowledge component, the student is sent to the exam phase.

Exam When the student has passed through all phases of all knowledge components (or skipped
them), he or she is sent to the exam phase. In this phase an exam is presented to the student that
needs to be completed before the student can move on. The exam grade is not used in any way by
the genetic algorithm, but merely provides a way to evaluate the level of the student after having
interacted with the system. When the exam has been submitted, the student is sent to the done
phase.

Done When all other phased have been completed, a student enters the last phase. Here a
questionaire is presented to the student, which is optional to fill in. In the experiment there
are two types of participants, one group is coming via Amazon Mechanical Turk and the other
through a different source. The group from Mechinal Turk is shown a button to return to the
Mechinal Turk website to collect their reward, while at the same time submitting the answers to the
questionaire, regardless of whether they are empty. The other group is shown a button to submit
their questionaire answers, but there is no side-effect. The student remains in this phase and has
finished his or her participation. This is also explained to the student.

5.3 GA Module

The genetic algorithm (GA) module is responsible for selecting the sequence of educational material
to be presented to a student. This module is separate from the tutor module in order to be
replaceable by a different approach, as was already needed earlier in the thesis process when this
module replaced its predecessor that applied a Markov Decision Process. The module implements
the approach described in Chapter 4, but several adjustments were made to the standard genetic
algorithm in order to make it work in a web-based environment. These adaptations resulted in the
web-based genetic algorithm as described in Section 5.3.1.

5.3.1 Web-based genetic algorithm

The implementation of the genetic algorithm had to be adjusted in order to be applicable in a web
context. In particular, the asynchronous nature of the HTTP protocol requires an adapted step-wise
version of the straightforward implementation using loop constructs.The reader can compare this
situation with that of a parallel implementation where fitness evaluations are run in parallel threads,
where in this analogy the students play the role of the parallel threads. In this parallel case, it is

3See Section 4.2.3.2

CHAPTER 5. SOFTWARE 22

True

Loop condition check

HTTP
Client Tutor

Select OER sequence

UCB-select

False

Answers

Sequence

Answers Calculate normalized gain

Group assignment

Regenerate

Initialize population

GA

Store evaluation

Cleanup state infoEnd interaction Debriefing

Start interaction Create user’s state info

Assemble pre-testPre-test

Init

Done
Assemble post-test

Perform
pre-test

Present
sequence

Perform post-
test

Post-test

2
3

4 5

6

1

Figure 5.3: Schema of client-server interaction in a web-based adaption of the genetic algorithm
loop

already necessary to deal with fitness values being sent back from the threads in a different order
than the threads were started in. A difference between the analogy and the actual situation is that
the students are not guaranteed to provide a fitness value, since they can decide to close the website.
That difference is important because it complicates the decision on when enough sequences have
been evaluated, since you don’t know whether a sequence you assigned to a student for evaluation
will actually be evaluated by that student or whether the system needs to assign it to another student.

The web-based genetic algorithm is best described by its interactions with one student. The
entire list of interactions between the student’s browser and the TutOER software is given by
the phases described in Section 5.2.1. Only the pre-test, sequence and post-test phases are of
interest for the web-based genetic algorithm. Figure 5.3 shows the relevant parts of the client-server
interaction between the student’s browser and the TutOER software. Note however that these
interactions are likely to be interrupted by interactions with other students. The figure also shows
the communication between the tutor module and the genetic algorithm. There are six numbered
components in the diagram. The rest of the section describes these components in more detail.

1: Initialize population Before any interaction occurs with students, the population of the
genetic algorithm is initialized. This is done for all populations that are required later on
and do not require a trigger from the client. As such it is not an interaction, but it has been
added to this list for completeness.

2: Group assignment The pre-test grade is used to determine which student group the student
will be assigned to. Each student group and knowledge component combination is captured
in a separate population in the genetic algorithm. The assignment of the student to a student
group, within the context of a knowledge component, determines the population from which
an individual will be selected to be evaluated.

3: Loop condition check In a parallel implementation you would start each evaluation thread
in a loop, iterating for the desired amount of episodes. Translating that to this situation

CHAPTER 5. SOFTWARE 23

would mean that the system somehow activates the student to evaluate it. In a web-based
implementation, everything is client-driven. Nonetheless, the genetic algorithm still consist
of an, at least implicit, loop for each desired episode. This component is designed to bring
the two together. It checks how many evaluation episodes have been stored in the current
generation and compares that to the desired total number of episodes. If the total has not
been reached yet, the UCB-select component is executed. If enough evaluations have been
collected however, the implicit loop has reached its termination condition. This means the
population must evolve to a new generation, which happens in the regerate component.

4: UCB-select For the largest part this component is identical to what it would be in any other
implementation. It uses the UCB-1 formula to select which sequence of educational resources
it wishes to evaluate, while balancing exploration and explotation. Because the evaluation is
done asynchronously, takes up significant time and is client-driven, it is necessary to keep
track of which sequences have already been selected by UCB and assigned to a student. This
in order to prevent UCB from unintendedly assigning the same sequence to many students,
simply because the evaluation results have not come back yet. Therefore sequences are locked
when they are assigned to a student and UCB can only choose from the sequences that are
not locked. This is probably similar to what you would do in a parallel implementation.

However, unlike in a typical parallel implementation, it is not at all guaranteed that a student
will actually study the entire sequence and submit the post-test afterwards. When a student
decides to stop participating for whatever reason, the sequence that was assigned to the
student would be forever locked. That could result in a situation where there are not enough
evaluations stored to proceed to a next generation, but since all sequences are locked UCB
has no way of assigning sequences to students. This is solved as follows. First, UCB attempts
to select a sequence that is not locked. Second, if that is no longer possible, the oldest lock
is discarded. Third, the method is tried again. This could mean that the system wrongly
decides to assign the sequence to another student. With the consequence that a sequence is
evaluated more often than UCB chose to. On the other hand, the lock could have prevented
the UCB in the first place from being able to deliberately select the sequence twice. This
mechanism is thus choosing between two evils, however it will likely not be applied often.

A side-effect of this is that an evaluation result could actually be submitted to the genetic
algorithm when it already moved to a new generation. The result of this is stored in connection
to the new generation, which means that effectively a sequence that was not part of the new
generation could still be evaluated. The sequence could not be selected as one of the survivors
at the next generation switch, but its fitness value is still stored and can be used whenever
the sequence reappears due to combination or mutation. This seemed to be the best solution.

5: Regenerate When enough evaluations have been gathered, this component executes the
generation switch for the current population as described in Section 4.2.4. The Django web
framework that was used to implement the TutOER software should ensure that during this
process the database tables were locked, preventing synchronization issues. This was however
not tested. After a the new generation has been formed, the loop condition check component
is retried again.

6: Store evaluation When a post-test is graded and the normalized learning gain is calculated,
the resulting fitness value is stored for the sequence that was evaluated in the context of
the current generation. This could be a different generation than the one the sequence was
selected from.

5.4 Monitor Module

The monitor module provides a real-time insight in the relevant processes, events and data stored
in the database. This module has only been used to monitor the experiment while it was running
and contained three views: log, student and population. The log view showed a long list of logged
events, as described in Section 5.5. The student view showed a list of the logged events related
to a particular student. It also showed an overview of the test scores, the assigned student group

CHAPTER 5. SOFTWARE 24

and the presented sequence for each knowledge component the student participated in so far. The
population view displayed a list of the individuals in each generation for a specific population. This
included observed fitness values and the cumulative regret graph for that population.

5.5 Logging Module

All logging of events is done by the logging module. This module is tighly connected to the tutor
and genetic algorithm modules and provides input to the monitor module. The tutor and genetic
algorithm modules send out signals when certain events occur, these signals are picked up by the
logging module and stored in the database as log entries. These log entries are then presented again
by the monitor module. The purpose of the logging activities is to aid monitoring and analysis of
what goes on within the TutOER software and its modules. The following events are stored in the
log entry table.

Error Any unexpected errors that were caught in the system are logged by the module.

New participant from external source The module logs each new participant that came
from an external source. In particularly it stores the identifiers of people participating
via Amazon Mechanical Turk, in order to be able to reconstruct the connection between
the student object in the database and the Mechanical Turk user in case something went
wrong. This was especially applicable during the experiment period.

Change in student state When a student object is created in the system en each time the
student enters a new phase in the user flow, the module logs this.

Trial created A trial is the particular instance of the tutor teaching actions for a specific
knowledge component and a specific student. The trial object contains the pre-test and
post-test results and the sequence that was presented to the student. The module logs
when this object is created it.

New generation in population Each time a population moves to a new generation, this is
logged by the module.

New immigrant in the population The module logs each time an individual immigrates in
a population. The individual that the immigrant replaced is also stored in the log entry.

5.6 Bootstrap values after restart

The experiment had to be restarted after 492 evaluations were already gathered. This was due
to some technical changes that had to be made. No changes were made to the resources or the
assessments. As such the gathered evaluations would still be valid observations. In order to reuse
these evaluations at least partly, the TutOER system was equiped with a bootstrap mechanism.
This mechanism reuses evaluations from earlier experiments where possible.

The technical changes affected the search behavior of the genetic algorithm. It is therefore
not likely that all evaluations will be reusable. In fact only when UCB-1 selects a particular
sequence to be evaluated, that evaluation could be bootstrapped. The bootstrap procedure extends
step 4 in Figure 5.3 and goes as follows.

1. Retrieve UCB-1 selection

2. If selected sequence is present in unused bootstrap values,

a) Submit bootstrap value as if a student evaluated it at that moment

b) Return to step 1.

3. Else, present sequence to student.

6

Simulations

Apart from a modeling of the domain, genetic algorithms also require several parameter values to be
set. These values can, together with modeling decisions, have an enormous impact on performance.
It is therefore important to gain more insight in the properties and effectiveness of the genetic
algorithm approach under various parameter values. This chapter describes and analyses a series of
simulations that explored this. The goal of the simulations is to find good parameter values for
the experiment. Additionally they provide some insight in the behavior and performance of the
TutOER system after a larger number of evaluations that would be possible in an experiment.
The simulations are executed using the same software that is used for the experiment. However, for
the sake of simplicity and speed the actual web interaction was left out of the simulation. Sequences
are therefore evaluated using a handcrafted model instead of using actual students. Each simulation
is repeated ten times to deal with the random components of the algorithm.

This chapter is organized as follows. The parameters that are examined are described in Section 6.1.
The simulations that cover these parameters are enumerated in Section 6.2. Section 6.3 describes
the general setup of each simulation. In Section 6.4 the simulation results are listed and an analysis
presented of the findings.

6.1 Parameters

The approach described in Chapter 4 requires several parameters to be set in advance. These
parameters influence the behavior and performance of the algorithm and are often not independent.
This section describes the effect of the four parameters that need to be set: population size, number
of episodes, number of elite and mutation rate.

Population size In the genetic algorithm modeling of the thesis the population has the same
amount of individuals in each generation. At the end of the generation, fitness-based selection
chooses individuals to produce offspring using crossover operations. The resulting offspring is then
potentially mutated. The amount of crossover and mutation operations are influenced by the
population size. A larger value allows for more diversity in the population, although it is not a
guarantee. Diversity is important when dealing with the possibility of local optima. However, a
smaller value allows for a more directed search towards an optimal solution.

Number of episodes The number of evaluations that will be assigned by UCB-1 within a single
generation is referred to as the number of episodes. A higher value of this parameter raises the
certainty of the estimated fitness values of each individual. This certainty is important when the
fitness value is subject to noise. UCB-1 however only ranks individuals and does not express whether
more evaluations will be beneficial. If the fitness of the individuals in the current generation is
rather low, a higher number of episodes will also increase the cumulative regret. Furthermore, the
number of episodes determines the “duration” of a single generation. A lower number of episodes
results in more completed generations, which is important for effective search.

25

CHAPTER 6. SIMULATIONS 26

Number of elite Elitism, as described in Section 4.2.4, preserves the best performing individuals
of the previous generation. The number of elite members reduce the number of crossover operations,
since elite members are maintained as is and are not replaced by their offspring. Moreover elite
members are protected against mutation. A higher number of elite members reduces the influence
of randomness on the population. However, elite members slow down the exploration. A high
number of elite members will cause the algorithm to get stuck in local optima.

Mutation rate The mutation rate determines the chance that a mutation occurs in the chromo-
some of a new individual. Mutation ensures that areas of the search space are explored, even when
the genetic algorithm moved in a different direction. When this parameter value increases, more
exploration occurs. Setting this parameter too high will result in a lack of convergenge.

6.2 Simulation setups

The parameter values of the genetic algorithm that need to be determined by simulation are
combined in parameter setups. Each setup contains a specific combination of values for each
parameter. The parameter setups are shown in Table 6.1. Two groups of six have been formed out
of these twelve parameter setups. The analysis of the TutOER system under specific parameter
setups is done per group. Group 1 contains the first six parameter setups and covers the interplay
between population size and the number of episodes. Group 2 contains the second six parameter
setups and covers the interplay between the number of elite and the mutation rate. Each parameter
setup is labelled with a systematic name for later reference.

Table 6.1: Parameter setups for the TutOER system divided in two groups

Label Population size # Episodes # Elite Mutation rate
pop5ep5 5 5 2 0.05
pop5ep10 5 10 2 0.05
pop5ep20 5 20 2 0.05
pop10ep10 10 10 2 0.05
pop10ep20 10 20 2 0.05
pop20ep20 20 20 2 0.05
el0mu05 10 10 0 0.05
el1mu05 10 10 1 0.05
el2mu05 10 10 2 0.05
el0mu25 10 10 0 0.25
el1mu25 10 10 1 0.25
el2mu25 10 10 2 0.25

The parameter setups are tested in two artificial environments. The first provides evaluation
outcomes using the handcrafted model displayed in Table 6.2. The handcrafted model contains
patterns that match to sequences, the explanation of these patterns can be found in Table 6.3.
Sequences that are not matched by any pattern get a fitness of 0. The model is based on the
author’s expectation of the true quality of the sequences containing resources about the intuition of
the game. The first environment will be referred to as the normal environment.

The second environment uses the same handcrafted model as the first environment, but adds
gaussian noise of 0.2 standard deviation. The purpose of the second environment is to see how the
performance of the TutOER system under each paramater setup is changed when the observed
fitness contains noise. The second environment will be referred to as the noisy environment.

In all simulations the sequences are restricted in length. Each sequence must contain one, two or
three resources. This restriction is the same as in the experiment described in Chapter 7.

CHAPTER 6. SIMULATIONS 27

Table 6.2: Fitness values for each sequence.

Sequence pattern Fitness
[5] 0.7
[6] 0.8
[7] 0.1
[8] 0.8
{6, (5 | 8)} 1
{5, 6, 8} 1
{5, 6, 7} 0.6
{*, *, (5 | 6), (5 | 6)} 0.7

Table 6.3: Explanation of sequence patterns.

Construct Meaning
[5] Resource 5.
[*] Any resource.
[5, 6] First resource 5 followed by re-

source 6.
{5, 6} Resources 5 and 6 in any order.
[(5 | 6)] Either resource 5 or 6.
{7, (5 | 6)} Resources 7 and either 5 or 6

in any order.

6.3 General setup

In order to compare the results from simulations more easily, each simulation is terminated after
1000 evaluations. This will give a genetic algorithm time to complete 100 generations with 10
evaluations in each generation. Similarly, a genetic algorithm setup with 20 evaluations in each
generation will only complete half as much generations. The comparison between the two might
not seem fair when looking at the number of generations. However, the task at hand defines
the evaluation to be a scarse resource that will require a new student each time. It is therefore
more interesting to know what a particular parameter setup accomplishes in a limited amount
of evaluations, rather than anything else. The number of generations that have been completed
after this fixed amount of evaluations is thus a consequence of the parameter setup. Section 6.1
describes the trade-off between number of generations and number of episodes that follows from
this restriction.

6.3.1 Evaluation metrics

To aid in the analysis of each simulation result, three views are applied to the data: the cumulative
regret curve, the coverage curve and the convergence plot.

Cumulative Regret Curve Recall that regret is defined as the difference in received reward
(i.e. learning gain) between the presented sequence and the optimal sequence. The cumulative
regret curve shows the built-up of regret after each evaluation. It provides insight in the handling
of exploration versus exploitation of the system under a particular parameter setup. Normally, the
use of the UCB-1 selection algorithm ensures that this curve decreases logarithmically over time.
However, due to the combination with the genetic algorithm, the options from which the UCB-1
algorithm can choose are limited. The interplay between the genetic algorithm and UCB-1 can
either boost or reduce performance. This curve visualizes the amount to which the performance of
UCB-1 is disrupted by this interplay. Each value of the curve is an average of the values of ten
repetitions on the same point. At each point the maximum and minimum value are indicated using
errorbars.

Coverage curve The coverage of the system is defined as the percentage of all possible sequences
that was evaluated at least once. The coverage curve shows how this percentage is built-up per
evaluation. In other words, the coverage curve shows when an evaluation explored uncharted
territory of the search space. New sequences become part of a generation due to crossover, mutation
and immigration. UCB-1 ensures that all sequences that are selectable will be evaluated at least
once1. Therefore, this curve provides an observation of the amount and timing of the introduction of
new individuals in the population. Similar to the cumulative regret curve, each value is an average
of the values of ten repetitions on the same point. At each point the maximum and minimum value
are indicated using errorbars.

1Provided the number of episodes is not smaller than the number of individuals in each generation.

CHAPTER 6. SIMULATIONS 28

Convergence plot The TutOER system is said to be converged when ten evaluations in a row
regarded an optimally performing sequence. A sequence is optimal when its true fitness value is
equal to the maximum. In the case of multiple optimal sequences, an evaluation of any of the
optimal sequences counts as the same optimal evaluation. This could mean that the system is said
to have converged after a series of ten evaluations of different optimal sequences. The flexibility in
this definition is required, because otherwise the system could be alternating between two equally
optimal sequences until termination without being said to converge. The number of evaluations
needed to reach that convergence point in each repetition is plotted in a boxplot. The fact that
only one datapoint derives from each repetition allows for this detailed look at the distribution.
Parameter setups that ensure a quick convergence are desired when acquiring evaluations comes
with a cost.

6.4 Results

6.4.1 Group 1 (Population size & # Episodes)

Analysis

Figure 6.1 shows the cumulative regret built-up by the TutOER system under the parameter
setups of Group 1 in the normal environment. Each simulation setup has been repeated ten times.
Each individual plot shows the averaged cumulative regret after each evaluation, together with
vertical error bars indicating the maximum and minimum value at every twenty evaluations. The
pop5ep20 setup stands out with a much higher cumulative regret built-up than the others. Due to
the number of episodes in the pop5ep20 parameter setup, only 50 generations have been completed
after 1000 evaluations. Also the pop10ep20 and pop20ep20 setups complete 50 generations. In
comparison, the pop5ep5 setup ensures the completion of 200 generations in the same number
of evaluations. The difference between the number of episodes and the number of individuals in
each generation is the largest for the pop5ep20 setups. Recall that UCB-1 selection is applied to
determine which individuals are evaluated. In the pop5ep20 setup, UCB-1 has very few individuals
to choose from (namely five) and relatively many evaluations to assign (namely twenty). This will
allow the TutOER system to aquire fitness estimates with much more confidence. However, when
none of the five individuals performs optimal, the TutOER system is forced to built-up regret
until the end of the generation before the genetic algorithm can continue its search. This is true for
all paramater setups, but because the number of individuals in each generation is relatively low
compared to the number of episodes in the pop5ep20 setup, it is more likely to happen than in a
setup where that difference is smaller.

The pop20ep20 setup is an example where that difference is much smaller. It has the same
amount of episodes as the pop5ep20 setup but a higher number of individuals in each generation
(namely twenty). That allows for more diversity in a generation. This has no effect in the first
generation, because the population is initialized with sequences of only one resource. Since there are
only four resources in the population, the first generation under the pop20ep20 setup will contain
sixteen duplicates. From the perspective of the UCB-1 selection, this has the same effect as in the
pop5ep20 setup. However, after the first generation there are more possibilities for exploration.
This is also reflected in the percentage of sequences that have been observed. Figure 6.3 shows
the percentage of possible sequences that have been encountered by the TutOER system under
the various parameter setups within Group 1. The pop20ep20 setup causes the most exploration.
Followed by the other parameter setups of Group 1 in decreasing order of their population size
parameter. However, some of the differences are too close to call. When comparing parameter
setups with the same population size, a second ordering becomes apparent. Parameter setups with
a high number of episodes (e.g. pop5ep20) have encountered a lower percentage of sequences than
parameter setups with a lower number of episodes (e.g. pop5ep5). This reverse relation comes
from the fact that a higher number of episodes means the genetic algorithm will complete less
generations in the same amount of evaluations. Completing less generations means less crossover
and mutation applications, and thereby also less opportunities for diversity.

CHAPTER 6. SIMULATIONS 29

The observation of these orderings in relation to the number of episodes and the population
size also hold in a more noisy environment. Figure 6.8 shows the percentage of sequences en-
countered under parameter setups of Group 1 in the second environment. Noise on the observed
fitness values should not have a direct impact on the level of exploration in the genetic algorithm
setup. What it could affect however is the direction of exploration and the regret as a result that.
Figure 6.2 shows the cumulative regret built-up by the TutOER system under the parameter setups
of Group 1 in a noisy environment. The differences with the results in the normal environment
are not that big. The parameter setups are slightly more apart in terms of cumulative regret, but
that difference is made early on in the simulation (Figure 6.2g). Given that the lines plotted in
the overview are averages of ten repetitions, there could also be an alternative explanation. For
example a mutation may have occured at a different time causing a different outlier in the simulated
cumulative regrets. This means that there might actually be no effect of the added noise on the
performance of the TutOER system under the parameter setups of Group 1. The impact of the
values for the mutation rate and number of elite in all parameter setups of Group 1 on this noise
resillience will be discussed in Section 6.4.2.

Figure 6.6a shows the boxplot for the ten repetitions of the number of evaluations needed to
converge under each parameter setup in Group 1. The actual numbers of the convergence at each
repetition can be found in Appendix D. The TutOER system converges the fastest on average
under the pop10ep10 parameter setup. Parameter setups pop5ep5 and pop5ep10 follow in second
and third place, even though they have a better median value. The one that stands out is the
parameter setup pop5ep20 with extreme outliers as well as a relatively high median value. However,
apart from one trial that took 769 evaluations to converge, all trials under any parameter setup of
Group 1 converged within 100 evaluations. In other words, all simulation setups resulted in sticking
to the optimal sequence of OER for at least ten consecutive evaluations using less than 100 simulated
students. And on average almost all parameter setups needed less than 50 simulated students
to converge. However, when the number of repetitions is small the outliers matter. Therefore
pop10ep10 and pop20ep20 should be favored over pop5ep10 and pop5ep5. Figure 6.6b shows the
boxplot distribution of the same parameter setups in a noisy environment. The same parameter
setups have outliers, with roughly the same number of evaluations that are needed to converge.
Parameter setup pop10ep10 outperforms the rest, including pop20ep20, on convergence in this
noisy environment.

Conclusion

From the plots of cumulative regret, coverage and convergence can be concluded that pop10ep10
scores best overal. The TutOER system had on average the lowest cumulative regret under the
parameter setup pop5ep5, but pop10ep10 and pop5ep10 followed in second and third place. The
most unique sequences were encountered on average by the TutOER system under pop20ep20

parameters, followed by the pop10ep10 parameters. In terms of convergence, the pop10ep10

parameters were most favorable for the TutOER system. Thus, out of the parameter setups
simulated, the population size and number of episodes of both 10 are overall best.

6.4.2 Group 2 (# Elite & Mutation rate)

Analysis

Figure 6.4 shows the cumulative regret of the TutOER system under the parameter setups of
Group 2. A clear distinction can be made between parameter setups with a low mutation rate and
those with a high mutation rate. The TutOER systems builds up less cumulative regret under
el0mu05, el1mu05 and el2mu05 parameters than under their counterparts with higher mutation
rates. This can be explained by the fact that a higher mutation rate typically means more explo-
ration. Exploration in turn causes higher regret when the newly found sequences turn out to be
less optimal than the current best. The number of elites doesn’t seem to affect the cumulative
regret that much in Figure 6.4. This is however different when operating in a noisy environment.
Figure 6.5 shows the cumulative regret under the parameter setups of Group 2 in the second
environment. Observing the cumulative regret under el0mu05 parameters we see that regret rises

CHAPTER 6. SIMULATIONS 30

significantly from around 100 evaluations. Figure 6.6d shows the worst convergence result under
the el0mu05 parameters is 80 evaluations. That means that the TutOER system already found
the optimal sequence but lost it in a generation transition. Otherwise UCB-1 would have ensured
that the cumulative regret curve continued its logarithmic path, by continuing to select the optimal
sequence. Losing the optimal sequence in a generation transition can easily be explained by the
fact that the el0mu05 parameters set the number of elites to zero. With no elite preservation,
the optimal sequence needs to compete in the fitness-based roulette wheel selection. In a noisy
environment the observed fitness value of the optimal sequence can be lower than the observed
fitness values of less optimal sequences. Additionally elitism protects the individual from being
applied to crossover or mutation operators. In lack of this protection, the optimal sequence may
have been subject to mutation or crossover and was thereby no longer present in the generation.
The counterpart of el0mu05 with a high mutation rate is el0mu25. The cumulative regret curve
of el0mu25 is indeed worse than the parameter setups with one or two elites preserved. However,
curiously the difference is not as extreme as with el0mu05. One would expect that having no elite
members would have a bigger impact when the mutation rate is higher given the larger risk of
mutating an already optimal sequence.

The parameter setup el2mu05 has the lowest cumulative regret in both environments. The el2mu05

parameter values are the most conservative of all. A high number of elites and a low mutation
rate keeps the performance of the TutOER system largely unaffected by the added noise in the
second environment. The consequence of a low mutation rate becomes apparent in Figure 6.7c. The
percentage of sequences evaluated by the system is one of the lowest under the el2mu05 parameters.
Other parameter setups with a low mutation rate share the low coverage value. This is also what
you would expect as a result of a low mutation rate. Given the similarly low cumulative regret
under el2mu05, it is not necessarily a bad thing. Furthermore, the convergence is the best under
the el2mu05 parameter setup in both environments.

The parameter setup el2mu25, which also has a high number of elites, performs much worse
than el2mu05. The cumulative regret under el2mu25 is a lot higher in comparison, though better
than the other parameter setups with a high mutation rate. The number of evaluations needed
to converge under the el2mu25 setup is comparable to others in its median value, but several big
outliers were the results of el2mu25 in both environments. The high percentage of sequences that
were evaluated under the el2mu25 values is the other side of that same coin.

Conclusion

From the plots of cumulative regret, coverage and convergence can be concluded that el2mu05

scores best overal. However, this conclusion is drawn while putting weight on the stability of a
low cumulative regret and conversion points. The coverage of sequences appears to be mostly
affected by a high mutation rate and to a lesser extend by a low number of elite members. The
TutOER system performs understandably poorly under the el2mu05 parameter setup. However,
better coverage is only favorable when it leads to quicker convergence and lower regret. In both
metrics, el2mu05 outperforms the rest. Albeit with varying margins.

CHAPTER 6. SIMULATIONS 31

(a) Population size: 5, Nr. of episodes: 5 (b) Population size: 10, Nr. of episodes: 10

(c) Population size: 5, Nr. of episodes: 10 (d) pop5ep20 parameters

(e) Population size: 10, Nr. of episodes: 20 (f) Population size: 20, Nr. of episodes: 20

(g) overview

Figure 6.1: Plot with error bars of the cumulative regret of the TutOER system using Group 1
parameter setups in the normal environment. Plot 6.1g shows the different parameter setups in one
graph.

CHAPTER 6. SIMULATIONS 32

(a) Population size: 5, Nr. of episodes: 5 (b) Population size: 10, Nr. of episodes: 10

(c) Population size: 5, Nr. of episodes: 10 (d) pop5ep20 parameters

(e) Population size: 10, Nr. of episodes: 20 (f) Population size: 20, Nr. of episodes: 20

(g) overview

Figure 6.2: Plot with error bars of the cumulative regret of the TutOER system using Group 1
parameter setups in the noisy environment. Plot 6.2g shows the different parameter setups in one
graph.

CHAPTER 6. SIMULATIONS 33

(a) Population size: 5, Nr. of episodes: 5 (b) Population size: 10, Nr. of episodes: 10

(c) Population size: 5, Nr. of episodes: 10 (d) pop5ep20 parameters

(e) Population size: 10, Nr. of episodes: 20 (f) Population size: 20, Nr. of episodes: 20

(g) overview

Figure 6.3: Plot with error bars of the percentage of chromosomes seen by the TutOER system
using Group 1 parameter setups in the normal environment Plot 6.3g shows the different parameter
setups in one graph.

CHAPTER 6. SIMULATIONS 34

(a) Nr. of elite: 0, Mutation rate: 0.05 (b) Nr. of elite: 1, Mutation rate: 0.05

(c) Nr. of elite: 2, Mutation rate: 0.05 (d) Nr. of elite: 0, Mutation rate: 0.25

(e) Nr. of elite: 1, Mutation rate: 0.25 (f) Nr. of elite: 2, Mutation rate: 0.25

(g) overview

Figure 6.4: Plot with error bars of the cumulative regret of the TutOER system using Group 2
parameter setups in the normal environment. Plot 6.4g shows the different parameter setups in one
graph.

CHAPTER 6. SIMULATIONS 35

(a) Nr. of elite: 0, Mutation rate: 0.05 (b) Nr. of elite: 1, Mutation rate: 0.05

(c) Nr. of elite: 2, Mutation rate: 0.05 (d) Nr. of elite: 0, Mutation rate: 0.25

(e) Nr. of elite: 1, Mutation rate: 0.25 (f) Nr. of elite: 2, Mutation rate: 0.25

(g) overview

Figure 6.5: Plot with error bars of the cumulative regret of the TutOER system using Group 2
parameter setups in the noisy environment. Plot 6.5g shows the different parameter setups in one
graph.

CHAPTER 6. SIMULATIONS 36

(a) Group 1 parameter setups (b) Group 1 parameter setups, with noise

(c) Group 2 parameter setups (d) Group 2 parameter setups, with noise

Figure 6.6: Convergence plots

CHAPTER 6. SIMULATIONS 37

(a) Nr. of elite: 0, Mutation rate: 0.05 (b) Nr. of elite: 1, Mutation rate: 0.05

(c) Nr. of elite: 2, Mutation rate: 0.05 (d) Nr. of elite: 0, Mutation rate: 0.25

(e) Nr. of elite: 1, Mutation rate: 0.25 (f) Nr. of elite: 2, Mutation rate: 0.25

(g) overview

Figure 6.7: Plot with error bars of the percentage of chromosomes seen by the TutOER system
using Group 2 parameter setups in the normal environment. Plot 6.7g shows the different parameter
setups in one graph.

CHAPTER 6. SIMULATIONS 38

(a) Population size: 5, Nr. of episodes: 5 (b) Population size: 10, Nr. of episodes: 10

(c) Population size: 5, Nr. of episodes: 10 (d) pop5ep20 parameters

(e) Population size: 10, Nr. of episodes: 20 (f) Population size: 20, Nr. of episodes: 20

(g) overview

Figure 6.8: Plot with error bars of the percentage of chromosomes seen by the TutOER system
using Group 1 parameter setups in the noisy environment. Plot 6.8g shows the different parameter
setups in one graph.

CHAPTER 6. SIMULATIONS 39

(a) Nr. of elite: 0, Mutation rate: 0.05 (b) Nr. of elite: 1, Mutation rate: 0.05

(c) Nr. of elite: 2, Mutation rate: 0.05 (d) Nr. of elite: 0, Mutation rate: 0.25

(e) Nr. of elite: 1, Mutation rate: 0.25 (f) Nr. of elite: 2, Mutation rate: 0.25

(g) overview

Figure 6.9: Plot with error bars of the percentage of chromosomes seen by the TutOER system
using Group 2 parameter setups in the noisy environment. Plot 6.8g shows the different parameter
setups in one graph.

7

Experimental setup

This chapter describes the experiment that has been performed to test the TutOER system. The
purpose of the experiment was to verify whether the presented apporach would also work in a
more realistic environment. The experiment took the form of an online course. In this course,
sequences of OER are presented to a student in four different lessons. The sequences are selected
by the TutOER system. Students are requested to answer a few multiple-choice questions at the
beginning and the end of each sequence. These questions assess the competency level of the student
on the topic of the lesson.

The educational materials that were used in the course are described in Section 7.1.1. The
pre-test and post-test questions are listed in Section 7.1.2. Section 7.1.3 describes the exam that is
presented at the end of the course. The experiment is ended with a questionaire that is presented
in Section 7.1.4. Section 7.1.5 discusses the participants. Section 7.2.1 lists the groups to which the
students will be assigned. Section 7.2.2 enumerates the parameter values chosen for the genetic
algorithm during this experiment.

7.1 Experiment

7.1.1 Open Educational Resources

Participants in the experiment went through a curriculum about the game of Nim. Nim [5] is a
mathematical game where two players alternate turns in taking away at least one object from
exactly one of stacks of objects on the table. The experiment only looks at the normal version of
the Nim game, where the person that takes the last object of the table wins. In the misère version
of the game, this person would have lost. Nim is a zero-sum game and is part of a large collection
of related games which have mathematically grounded strategies. Nim’s winning strategy, provided
you are in a winnable position, involves applying the nim-sum operator.

The Nim curriculum is divided into four knowledge components. First, the rules of the game
are explained. Second, some intuition about good strategies is formed. Third, binary numbers
are covered. Fourth, the binary nim-sum operation is explained. For each of these knowledge
component, four educational resources were created from scratch or composed of explanations
found on the internet. For the genetic algorithm to have a chance of learning something, it is
important that the collection of resources contains both good and bad material. The resources for
each knowledge component are described in Appendix B, the rest of this section will describe each
knowledge component.

Rules of the game The first knowledge component covers the rules of the Nim game. The
playing field of the game contains two or more stacks of objects. Nim is played by two players that
in turn take away at least one object from exactly one stack of objects. The player that takes a
way the last object from the playing field wins.

40

CHAPTER 7. EXPERIMENTAL SETUP 41

Intuition The intuition behind a winning strategy is the subject of the second knowledge
component. In any Nim game, it is desirable to leave your opponent with two equally sized stacks.
From that position, you can mimic any move your opponent made and return to the same situation
until only one object is left for you to take away and win. The understanding that it is beneficial
to leave your opponent with two equal stacks is the intuition behind the winning strategy for the
Nim game.

Binary Numbers The third knowledge component covers binary numbers. In order to generalize
the intuition to a winning strategy for any winneable situation a student needs to be able to work
with binary representations of numbers. Specifically, a student needs to be to able to convert
decimal numbers into binary numbers.

Nim-Sum The key to winning the Nim game in any winnable situation is to leave the game in a
state where the nim-sum of the stacks is zero. The nim-sum operator is in fact the exclusive or
(XOR) operator, which describes the sum of two binary numbers neglecting all carries between
digits. A different way to put this is that the XOR operator outputs a ‘one’ when exactly one of
the two inputs contains a ‘one’, and ’zero’ in the other case. In a winnable situation, the nim-sum
is not equal to zero at the beginning of your turn. You then remove a number of objects from a
single stack, such that the nim-sum becomes zero. The nim-sum operator can not only be used to
determine whether the nim-sum will be zero after an action, it can also be used to identify which
action you can take.

A slightly easier operation to perform mentally is to write down the stacks underneath each
other in binary format, count the number of ‘ones’ in each digit column (20, 21, 22 etc) and ensure
that each column has an even number of ‘ones’. In the resources used in this thesis this method is
referred to as pair cancelling.

7.1.2 Pre-test & post-test

In this experiment, each knowledege component has the same questions for both the pre-test
and post-test. Given the low threshold for participants to stop participating in the experiment
it was necessary to keep the time needed to fill in the questions limited. This resulted in three
multiple-choice questions for each knowledge component. All questions have at least the option
that indicates that the user doesn’t know the answer. This is still counted as a wrong answer, but
is more informative for later analysis than a random guess which could be right by accident. The
questions for each knowledge component are listed in Appendix C.

7.1.3 Exam

Figure 7.1: Screenshot of the exam setup with five nim game scenarios

After having completed all knowledge components, a student is presented a final exam. The purpose
of this exam is to have an opportunity to compare students at the beginning of the experiment
with those at the end. The exam questions are nim game scenarios that the student has to play.

CHAPTER 7. EXPERIMENTAL SETUP 42

The game interface is described in Appendix B.1. If the student wins, the question is answered
correctly. If the computer wins, the question is counted as wrong. The exam grade is calculated as
the percentage of won games. The result of each game is displayed in a progress bar, as can be
seen in Figure 7.1. The exam is introduced with the following explanation.

You will be playing 5 nim games of varying difficulty. This is your opportunity to show your
learned skills. The orange rectangles represent stacks of objects. The number of objects on the
stack is shown by the white number in the stack. You can take objects off a stack by clicking
on it. You will then be asked how many objects you want to take. After you have made a
move, your artificial counter player will make one as well. The game ends when either of you
won. After you have played all 5 nim games you are finished.

The nim game scenarios are not randomly generated and are increasing in difficulty. The following
list enumerates the game configurations for each question.

1. Two stacks consisting of one and two objects.

2. Three stacks with two, three and two objects.

3. Three stacks containing four, five and six objects.

4. Four stacks consisting of one, three, four and five objects.

5. Four stacks with ten, four, six and nine objects.

7.1.4 Questionaire

At the end of the course, after all knowledge components and the exam have been completed by
the student. A small optional questionaire is presented to the student. The questionaire consisted
of two multiple choice questions and one open ended question.

1. How good were you at Nim before these lessons?

• I could not play it at all.

• I could play it a little bit.

• I could play it very well.

2. How good do you think you are after these lessons?

• I cannot play it at all.

• I can play it a little bit.

• I can play it very well.

3. Do you have any last comments you whish to make?

7.1.5 Participants

7.1.5.1 Amazon Mechanical Turk

Participants for the experiment are partly found via the Amazon Mechanical Turk1 service, where
tasks that are currently not possible to execute using artificial intelligence can be done by humans in
return for a small fee in the form of Amazon credits. The site forms a market place where a requester
can post a certain Human Intelligence Task (HIT) that he or she wants to have crowdsourced for a
certain price and where providers choose which tasks they want to perform. The provider chooses
the time and place of the execution, as most if not all HIT s are only bound to existence of an
internet connnection. Only when a provider completes the HIT to the approval of the provider

1https://www.mturk.com/mturk/

https://www.mturk.com/mturk/

CHAPTER 7. EXPERIMENTAL SETUP 43

will he or she be paid the agreed amount. A provider is not forced to finish a HIT and can decide
to give up participation at any moment during the HIT. Typically a preview is shown of the task
before the provider makes the decision to accept.

In the context of this thesis, a HIT represents an entire walkthrough of the experiment including
the different knowledge components and the final exam of one participant. Providers were initially
paid ten cents for this task, which was raised to twenty cents during the experiment to speed up the
data collection. All providers that completed the experiment were paid, regardless of the provider ’s
performance or usefulness of the data. Providers that dropped out during the experiment were not
paid, but the data that was collected as a result of their actions so far was still kept.

7.1.5.2 Social network

Other participants were found via Twitter, Facebook, LinkedIn and Reddit. No further explanation
was given about the game or the nature of the experiment. Participants that arrived at the
experiment via these communication lines did so without a form of financial reward as providers did
in Mechanical Turk. The call on social networks was sent out in the second half of the experiment.

7.2 Genetic algorithm setup

7.2.1 Populations

Recall that each student group is a separate population. In order to reduce the number of required
data points, the students were split up in only two different student groups per knowledge compo-
nent. The splitting criteria was based on the achieved pre-test score. If a student scored more than
50% then he or she was assigned to the High group of that knowledge component, else he or she
was assigned to the Low group of that knowledge component. This resulted in the following groups.

Knowledge Component Pre-test score Group
Rules of the game ≤ 50% Rules Low
Rules of the game > 50% Rules High
Intuition ≤ 50% Intuition Low
Intuition > 50% Intuition High
Binary Numbers ≤ 50% Binary Low
Binary Numbers > 50% Binary High
Nim-Sum ≤ 50% NimSum Low
Nim-Sum > 50% NimSum High

7.2.2 Parameters

Chapter 6 analyzed what the optimal parameter values were for the genetic algorithm using evalua-
tions based on the handcrafted model. These parameter values will be used for the experiment as
well, apart from one exception. The number of individuals in the population was set back from
ten (as it was in the pop10ep10 setup) to seven. This was out of precaution to avoid the situation
where a too large diversity would require more students to show signs of convergence than would
be available to the experiment. This set the parameter values of the genetic algorithm in the
experiment to the following.

Parameter Value
Population size 7
Number of episodes 10
Number of elite 2
Mutation rate 0.05
Minimum length 1
Maximum length 3

CHAPTER 7. EXPERIMENTAL SETUP 44

7.3 Evaluation

The purpose of the experiment is to show that the approach taken in this thesis could work in a more
realistic setting with actual students. To determine that, two types of success indicators are used.
Furthermore several other views on the data are utilized to gain more insight in what happened.
That is useful to find the reason for the success, or lack thereof. Both sets of visualisations and
metrics are described in this section.

7.3.1 Indicators of success

The main question is: does the system learn to pick sequences with more learning impact over those
with less impact? This question is answered using two metrics: cumulative regret and convergence.

7.3.1.1 Cumulative regret

The cumulative regret metric is similar to the one used in evaluating the simulations. There, regret
was defined as the difference in received reward between the presented sequence and the optimal
sequence. However, unlike in the simulation environment, in the experiment setting the optimal
sequence is not known. We can only compare to the best sequence we have seen so far, which
may or may not be the global optimum. Thus, the cumulative regret is defined as the cumulative
difference between the estimated fitness of the presented sequence and the highest known estimated
fitness, within the same population.

The estimates used in the regret calculation are the estimated values at the end of the experiment.
The reason is that comparing with the estimated values at the moment of the decision is less
interesting. Theoretical results from the literature about genetic algorithms and UCB already tell
us how they will deal with exploration versus exploitation and the regret that would be caused by
that. Furthermore from the simulations performed in this thesis it appears that the algorithm is
properly implemented. What the experiment is intended to find out is whether the task of OER
quality assessment by curriculum sequencing is feasible in a realistic scenario with noise due to
real students. For that purpose it is more interesting to see whether the TutOER system would
temporarily discard optimal sequences that have seem to perform poorly at the time, or whether
the system is robust enough.

If the approach works, the regret will decrease over time. As a result the growth of the cu-
mulative regret will, approximately, stop. The TutOER system will always continue to try out
sequences that appear to be suboptimal, but the intervals between these explorations will increase.
Small peaks in regret are thus expected, but the trend of the line should be flat. The cumulative
regret curve shows the development of the cumulative regret after each student.

Furthermore, there are quantitative metrics that can be extracted from the cumulative regret
curve. The final cumulative regret value is not particularly interesting, since it doesn’t capture the
trend of the cumulative regret curve. However, the cumulative regret of the first 20% and last
20% of evaluations do capture the trend, albeit in a low resolution. If the approach works, the
cumulative regret of the last 20% of evaluations must be lower than that of the first 20%. Ideally
the last 20% of evaluations have no further regret at all, which would result in a cumulative regret
of zero for those evaluations. However, due to the incidental explorations it is possible that a
small peak occurs in the last 20% evaluations. In that case, the cumulative regret curve will give a
definitive answer about the trend.

7.3.1.2 Convergence point

In general we want any learning algorithm to converge. The notion of convergence however needs
some adjustment, because of the mentioned incidental exploration. The used definition of the point
of convergence is the evaluation from which twenty-five consecutive evaluations targeted the same
sequence. This metric does not indicate whether the system converged on presenting the optimal
sequence, only that it converged on some sequence.

CHAPTER 7. EXPERIMENTAL SETUP 45

7.3.2 Insight in behavior

7.3.2.1 Coverage curve

The coverage is defined as the percentage of sequences that was evaluated at least once. This metric
is identical to the one used for the simulation analysis. The total number of possible sequences is
40. That means each new encountered sequence adds 2.5% to the coverage. There are limits to
what percentages can theoretically be achieved in each generation. Each population is initialized
with four different sequences in its first generation. Furthermore, there are seven individuals in
each consecutive generation. That means that the maximum coverage is given by 4 + 7 · (i− 1), for
each ith generation.

More coverage is not necessarily a good thing. The genetic algorithm should steer the search towards
the more promising areas of the search space. However, the coverage can offer some indication as
to how reliable the statements about optimality are. When a larger area of the search space has
been encountered, it is more likely that the found optimum is a global one.

7.3.2.2 Evaluation noise

The observed learning gain of each sequence is expected to vary per student. The amount of noise
in this learning gain has an impact on the performance of the system. The evaluation value for
the best sequence of each population is plotted (in blue) for each student. Alongside, the running
average is shown (in green), which is the estimate of the sequence’s fitness after each evaluation.

7.3.2.3 Sorted number of evaluations

The genetic algorithm, together with UCB-1 selection, introduces a bias towards evaluating certain
sequences over others. That is also what they are intended to do. However, a very skewed
distribution of evaluations indicates that sequences did not receive the same opportunity to prove
optimal. Particularly when the evaluation noise is large.

7.3.2.4 Diversity table

The diversity table shows the percentage of unique sequences at each generation for each population.
A diversity of 43% indicates that across the seven individuals three distinct chromosomes were
divided. Similarly, a diversity of 14% means that all individuals have the same chromosome. The
table does not capture how many occurences each chromosome has. This is also not relevant. The
UCB-1 algorithm selects which sequence to evaluate regardless of their number of occurences in the
generation.

8

Results

The experiment described in Section 7 offers an online course consisting of four lessons. A partici-
pant’s competence is assessed at the beginning and end of the lesson. The pre-test result determines
the student group to which the participant is assigned. The TutOER system selects the sequence to
be presented to the participant within that student group. The approach balances exploration and
exploitation to maximize the expected learning gain while minimizing online regret. The purpose
of the experiment is to answer the central question: does the system learn to pick sequences with
more learning impact over those with less impact? There are two metrics that answer this question.
Firstly, we expect to see the slope of the cumulative regret to decrease. This is captured in the
difference between the cumulative regret during the first and last 20% of evaluations. Secondly, we
expect the TutOER system to converge, as captured in the convergence point. In this chapter the
result of the experiment are enumerated and discussed.

Table 8.1 shows an overview of the important metric values for each population. In the pop-
ulations Rules low, Intuition low, Binary low and Nim-sum low, the system reduced and stabilized
the growth of the regret. In those populations, the system converged to the best sequence en-
countered. The Rules high, Binary high and Nim-sum high populations did not receive enough
participants to conclude anything. Table 8.2 shows the number of evaluations received for each
population. In population Intuition high, the system was not successful in stabilizing the regret.
This is likely due to a bug, which is discussed in more detail in Section 8.2. The same has occured
in population Binary high.

The participants that made it to the end of the experiment also completed the final exam, where
they played five consecutive Nim games. Table 8.3 shows the frequency of exam scores for the first,
second, third and last 25% of those participants. The average score is slightly higher in the last
25% compared to the first. However, there is not a clear trend upwards. The experiment has thus
not convincingly shown a clear improvement in participants’ understanding of how to play the Nim
game. In other words, the sequences presented in each lesson did not improve over time enough to
cause a clear effect on the displayed Nim competence.

The answer to the central question is, yes in some populations it did. It is not known whether the
sequences that appeared to be the best are actually the global optimum. The estimated fitness
values of some of the best sequences are quite low, especially in the case of the Nim-sum low
population. It is not unlikely that the approach got stuck in a local optimum in this case. Although
it is also possible that none of the sequences would have been effective. The estimated fitness of
the best sequence in the Rules low population is however much more convincing. The populations
in which the system did not seem to work had either too little data or were affected by a bug.
However, it is of course not certain that the system would’ve been successful otherwise.

To better understand what the effects were of the TutOER system, the results per lesson are
described in more detail in the rest of this chapter.

46

CHAPTER 8. RESULTS 47

Table 8.1: Overview of evaluation metric scores for each population. The convergence column is the
evaluation from when at least 25 students got the same sequence presented. The best column shows
the estimated fitness of the best seen sequence. The cumulative regret scores show the cumulative
regret for both the first and the last 20% of the evaluations. The coverage indicates the percentage
of sequences evaluated at least once.

Population Convergence Best First 20% Last 20% Coverage
Rules low 14 0.7634 12.115 0.000 8/40
Rules high No 0.4388 2.286 0.514 5/40
Intuition low 20 0.4576 7.043 0.000 7/40
Intuition high 8 0.5959 16.540 4.996 6/40
Binary low 65 0.5251 3.523 0.000 11/40
Binary high No 0.3265 1.347 1.684 4/40
Nim-sum low 20 0.2557 2.717 0.000 8/40
Nim-sum high No 1.000 7.980 6.263 10/40

Table 8.2: The table shows five student statistics for each lesson. First, the number of students
that completed the low category. Second, the number of bootstrap values that were used in the low
category. Third, the number of students that completed the high category. Fourth, the number of
bootstrap values that were used in the high category. Last, the number of students that skipped the
lesson.

Category low Category high
Lesson Completed Bootstrapped Completed Bootstrapped Skipped
Rules 204 19 19 10 14
Intuition 85 23 71 30 81
Binary 106 26 16 11 117
Nim-sum 154 12 13 9 6

Table 8.3: Frequency of exam scores for the first, second, third and last 25% of the participants.
Exam scores are defined as the number of Nim games won.

Frequency of number of games won
Participants 0 wins 1 win 2 wins 3 wins 4 wins 5 wins Average win
First 25% 9 19 9 1 2 0 1.2 games
Second 25% 7 13 9 5 2 5 1.9 games
Third 25% 9 17 9 2 2 2 1.4 games
Last 25% 6 13 13 0 5 4 1.9 games

8.1 Lesson: Rules

The Rules low population completed 22 generations and received 223 evaluations by students.
At the end of the experiment this population converged to the best sequence encountered. The
sequence contains Resource 3 and Resource 1, in that order, and will be referred to as Sequence [3,1]
for the rest of the chapter. In total 103 out of 178 students that got Sequence [3,1] answered all
post-test questions correctly. A graph of all evaluations of this sequence can be seen in Figure 8.1a.
The estimated fitness of Sequence [3,1] at the end of the experiment was 0.7634. Sequence [3,1] was
created by a mutation on Resource 3 in the transition from the fourth to the fifth generation that
added Resource 1. At first, Resource 1 dissapeared from the population after not being selected for
the second generation. Resource 3 had the highest fitness of the first four generations

Figure 8.1b shows that after 40 evaluations, in the fifth generation, TutOER switches to the
evaluation of Sequence [3,1]. This is only deviated from at two points. First, at the 81st evaluation,
the TutOER system tried out Resource 1 once more. Second, from evaluation 141 till 144 the
TutOER system evaluated the mirrored version of Sequence [3,1] that ended with Resource 3. In
both cases however, the TutOER system returned to the optimal sequence.

CHAPTER 8. RESULTS 48

Figure 8.5a shows the Rules low population encountered a fifth of all sequences, namely eight out
of 40. Although this was enough to find Sequence [3,1], the large majority of sequences was not
attempted. No sequences of three resources were attempted. These sequences filled 60% of the
total number of possible sequences in this experiment. When comparing to the possible sequences
of two resources maximum, the TutOER system evaluated half.

The Rules high population encountered five out of 40 possible sequences. However, in contrast
to Rules low, only 30 evaluations were collected. As a result, the population completed just two
generations. The best sequence at the end of the experiment contained only Resource 1. The
estimated fitness of this sequence is 0.4388. The number of evaluations is however too low to put
much value on the estimate. Figure 8.1d shows the cumulative regret built-up in Rules high. The
best sequence at the end of the experiment is already present in the first generation and remains
present in each consecutive generation. In the third generation, Sequence [3,1] enters the population
by means of immigration from the Rules low population. The new sequence is tried four times in a
row and two times later on, but the measured fitness was lower than the current best sequence.

(a) Sequence [3,1] in the Rules low population (b) Rules low

(c) Sequence [1] in the Rules high population
(d) Rules high

Figure 8.1: The left side contains observed normalized learning gain values (blue) plotted with the
running average (green) of the best sequences for the Rules lesson. The right side contains the
cumulative regret curves for the Rules lesson.

8.2 Lesson: Intuition

Figure 8.2b shows the cumulative regret of the Intuition low population. During the experiment
108 evaluations were received from students. The best sequence at the end of the generation
is Sequence [6]. The sequence was already present in the first generation and remained present
throughout all eleven generations. The estimated fitness of Sequence [6] is 0.4576. The range of
observed fitness values for Sequence [6] is plotted in Figure 8.2a.

CHAPTER 8. RESULTS 49

In the second generation of the Intuition low population, the TutOER system tried out the
sequence of Resource 5 and Resource 6 several times in both orderings. Both however scored
lower than the best sequence in that generation. As a result, in the third generation almost all
individuals contained Sequence [6]. This is also visualized in Table 8.4 that shows the diversity of
the Intuition low population dropped to 29%, which means there are two types of sequences in
the generation. From the second generation onwards, the TutOER system sticks to presenting
Sequence 6. The only exception is the 61st evaluation where Sequence [6,8], coming from the
Intuition high population, is tried once. At the end of the experiment seven out of the 40 sequences
were encountered, which is also shown in Figure 8.5c.

The best sequence in the Intuition high population at the end of the experiment is Sequence [6,8].
The estimated fitness value of this sequence is 0.5959. However, the TutOER system did not
manage to hold on to this sequence. As a result, it was only evaluated ten times. Figure 8.2c
displays the observed fitness values. After the first generation, three consecutive generations were
dominated by Sequence [6]. All other sequences that were present in the first generation had a
negative estimated fitness. In the roulette wheel selection these sequences have a zero chance
of being selected. Furthermore, the elite member slots were filled with the two occurences of
Sequence [6]. Table 8.4 shows the drop in diversity as a result. Figure 8.5d shows that at the end
of the experiment six out of the 40 sequences were encountered.

In the fifth generation a mutation on Sequence [6] resulted in Sequence [6,8]. The TutOER
system lost the sequence in the transition to the seventh generation. This is likely due to a bug in
the software related to sequences that migrated. As a consequence the aggregated fitness value of
those sequences was altered by both populations in which it was present. This aggregated value was
used by both the UCB algorithm and roulette wheel selection. As a result, Sequence [6] appeared
to have a higher fitness than Sequence [6,8] when this was not the case. The bug was discovered
after the experiment was completed. The fitness estimates used in this report are not affected by
this bug.

8.3 Lesson: Binary

The Binary low population received 132 evaluations by students. Sequence [9] turned out to be the
best with an estimated fitness of 0.5251. Figure 8.3a shows the observed fitness values for each of
the 103 students that evaluated Sequence [9]. Figure 8.6e shows that these 103 evaluations make
Sequence [9] the most evaluated sequence in this population by far. Yet eleven out of 40 possible
sequences have been encountered, as can be seen in Figure 8.5e. This is the highest coverage of the
eight populations.

Figure 8.3b shows the cumulative regret in the Binary low population. The best sequence,
Sequence [9], is already present in the first generation. From the 40th evaluation, the TutOER
system sticks to Sequence [9]. In the seventh generation, a few evaluations were assigned to
Sequence [9,11]. However, with an estimated fitness of 0.4676 this sequence did not outperform
Sequence [9].

Contrary to its counterpart, population Binary high has the lowest coverage of all populations.
Figure 8.5f shows that only 4 out of 40 sequences have been encountered. That is the coverage that
every population starts with. No crossover operations were applied in the transition to the second
population. The order of the sampling of survivors resulted in two pairs of equal chromosomes and
one different chromosome at the end. The parent selection selects pairs from this sampled list of sur-
vivors from top to bottom to be potential parents. The first two pairs of parents were identical and
therefore unfit for crossover. The last survivor could not be paired with anything. As a result, the
second generation of the Binary high population was filled with survivors and not with their offspring.

The third generation contained only Sequence [12] apart from the two elite members that carried
Sequence [9]. When only the same sequence is sampled, no crossover can be applied. The reasoning

CHAPTER 8. RESULTS 50

(a) Sequence [6] in the Intuition low population (b) Intuition low

(c) Sequence [6,8] in the Intuition high population (d) Intuition high

Figure 8.2: The left side contains observed normalized learning gain values (blue) plotted with the
running average (green) of the best sequences for the Intuition lesson. The right side contains the
cumulative regret curves for the Intuition lesson.

is similar to that in the previous paragraph. Table 8.4 shows the reduction in diversity in three
generations.

After 27 evaluations, the best sequence in Binary high is Sequence [10] with an estimated fitness of
0.3265. However, Figure 8.3d shows the TutOER system does not hold on to the best sequence.
The bug relating to immigrated chromosomes that was discussed in Section 8.2 is likely the cause of
that. Sequence [9] that immigrated from Binary low appeared to be the best performing sequence.
Even though Sequence [10] was in fact the only sequence with a non-negative fitness estimate.
However, with so few evaluations it is hard to say whether Sequence [10] was actually good.

8.4 Lesson: Nim-sum

The Nim-sum low population gathered 166 evaluations by students at the end of the experiment.
From the 15th evaluation onwards, the TutOER system mainly stuck to evaluating Sequence [16].
This is also reflected in the cumulative regret curves shown in Figure 8.4b. With an estimated
fitness of 0.2557, Sequence [16] turned out to be the best sequence of the population. Figure 8.6g
shows the difference between the number of evaluations of each sequence. The difference between
the first and second most evaluated sequence is 150 evaluations. This difference is the largest of all
other populations, but Rules low comes close with a difference of 148 evaluations. Also similar to
in Rules low, eight out of 40 possible sequences were encountered. However, the diversity in each
generation is rather low. From the fourth to the eighth generation, only one sequence was present.
Table 8.4 shows the diversity per generation.

The least matured population is Nim-sum high with only 22 evaluations. Despite the limited
number of evaluations, ten out of 40 sequences were encountered (Figure 8.5h). Table 8.4 shows the

CHAPTER 8. RESULTS 51

(a) Sequence [9] in the Binary low population
(b) Binary low

(c) Sequence [10] in the Binary high population
(d) Binary high

Figure 8.3: The left side contains observed normalized learning gain values (blue) plotted with the
running average (green) of the best sequences for the Binary lesson. The right side contains the
cumulative regret curves for the Binary lesson.

high diversity that is the cause of this. The best sequence is Sequence [15,16] with an estimated
fitness of 1.0. However, this sequence has only been evaluated once. The variance in the fitness of
all other learning materials shows that one evaluation provides very little information.

CHAPTER 8. RESULTS 52

(a) Sequence [16] in the Nim-sum low population

(b) Nim-sum low (c) Nim-sum high

Figure 8.4: The left side contains observed normalized learning gain values (blue) plotted with the
running average (green) of the best sequences for the Nim-sum lesson. The graph for the Nim-sum
high population is however not shown, since the best sequence only had one evaluation. The right
side contains the cumulative regret curves for the Nim-sum lesson.

CHAPTER 8. RESULTS 53

(a
)
R
u
le
s
lo
w

(b
)
R
u
le
s
h
ig
h

(c
)
In
tu
it
io
n
lo
w

(d
)
In
tu
it
io
n
h
ig
h

(e
)
B
in
a
ry

lo
w

(f
)
B
in
a
ry

h
ig
h

(g
)
N
im

-s
u
m

lo
w

(h
)
N
im

-s
u
m

h
ig
h

F
ig

u
re

8
.5

:
P

er
ce

n
ta

ge
o
f

se
qu

en
ce

s
ev

a
lu

a
te

d
a
ft

er
ea

ch
ev

a
lu

a
ti

o
n

in
ea

ch
po

p
u

la
ti

o
n

.

CHAPTER 8. RESULTS 54

(a
)
R
u
le
s
lo
w

(b
)
R
u
le
s
h
ig
h

(c
)
In
tu
it
io
n
lo
w

(d
)
In
tu
it
io
n
h
ig
h

(e
)
B
in
a
ry

lo
w

(f
)
B
in
a
ry

h
ig
h

(g
)
N
im

-s
u
m

lo
w

(h
)
N
im

-s
u
m

h
ig
h

F
ig

u
re

8
.6

:
S

o
rt

ed
n

u
m

be
r

o
f

ev
a
lu

a
ti

o
n

s
o
f

ea
ch

se
qu

en
ce

in
ea

ch
po

p
u

la
ti

o
n

.

CHAPTER 8. RESULTS 55

Table 8.4: Diversity percentage at each generation

(a) generation 1-12

Generation
Population 1 2 3 4 5 6 7 8 9 10 11 12
Rules Low 57% 57% 43% 57% 43% 29% 14% 14% 29% 14% 29% 29%
Rules High 57% 29% 29% — — — — — — — — —
Intuition Low 57% 43% 29% 29% 29% 14% 29% 14% 14% 14% 29% —
Intuition High 57% 14% 14% 14% 29% 29% 14% 29% 29% 14% 29% —
Binary Low 57% 57% 43% 86% 29% 14% 43% 43% 29% 29% 43% 14%
Binary High 57% 43% 29% — — — — — — — — —
NimSum Low 57% 57% 29% 14% 14% 14% 14% 14% 29% 14% 14% 29%
NimSum High 57% 86% 86% — — — — — — — — —

(b) generation 13-24

Generation
Population 13 14 15 16 17 18 19 20 21 22 23 24
Rules Low 43% 29% 29% 29% 29% 29% 29% 14% 14% 29% 43% —
Rules High — — — — — — — — — — — —
Intuition Low — — — — — — — — — — — —
Intuition High — — — — — — — — — — — —
Binary Low 29% 14% — — — — — — — — — —
Binary High — — — — — — — — — — — —
NimSum Low 14% 14% 14% 14% 14% — — — — — — —
NimSum High — — — — — — — — — — — —

9

Conclusion / Discussion

In this thesis a novel approach to automatic assessment of OER quality has been presented and
evaluated. Measurements of the impact of OER on learning as component of the OER quality was
largely missing in the literature. The TutOER system evaluates OER in a sequence by assessing
students’ competence levels before and after the presentation of the OER sequence . The confidence
of the estimate had to be balanced with the cost of presenting bad educational content to students.
The curriculum sequencing task from the intelligent tutoring systems community has been used as
framework to do this. The UCB-1 selection mechanism was applied to determine which OER te
evaluate. A genetic algorithm was used to limit the scope of UCB-1 and to have a more directed
and structured search. The system was evaluated in an online experiment.

The experiment shows that fitness evaluations can vary widely for one sequence. There are
three possible causes for that. Firstly, the assessments presented in the experiment had only three
multiple-choice questions. The results from these assessments are thus more susceptible for noise
than a more extensive assessment. In particular, potential guessing of students has a high impact
on the outcome. Secondly, the division of students in student groups is rather coarse. It is highly
likely that students within one student group form everything but a homogeneous group. Not only
did students who had zero questions or one question correct in the pre-test end up in the same
group. Students also potentally differed on learning style, age or prior knowledge on related topics.
Not to mention that students who participated presumingly did so in different environments, levels
of concentration, committment and time to spare. These factors could all have an impact on the
measured learning gain, especially in the more complex lessons at the end. Lastly, the system
assumes that the performance on the current sequence is independent of the sequences presented
in other lessons. This assumption is of course a simplification of reality, since whether a student
understands binary numbers will affect the chance of learning the nim-sum. Part of the noise in
the fitness evaluations could be explained by the fact that students in the same group had different
learning experiences in previous lessons.

Despite the varying fitness observations, the TutOER was capable of finding the best1 sequence in
at least one student group for each lesson in the experiment. The best sequences had on average a
higher fitness than the other sequences. In some cases the best sequence appears promising enough
to be close to a global optimum. For example, the sequence found in the Rules low population had
a high fitness of 0.7634. Furthermore, 103 out of 178 students got all post-test question correct
after seeing this sequence. Many more students at least improved their score.

In some other cases the best sequence is less convincing. For example, the best sequence in
the Nim-sum low population had a low fitness of 0.2557. More than half of the students had an
equal or even lower post-test score compared to their pre-test. In these cases it is not a stretch
to imagine that a better sequence might have existed. Even though on average this sequence was
better than the rest on decisive moments. Due to the chosen parameter values of the genetic

1The best relative to what TutOER has seen.

56

CHAPTER 9. CONCLUSION / DISCUSSION 57

algorithm, decisions are made on relatively few evaluations. Furthermore, the order in which the
students participate is approximately random. Given that most if not all OER sequences will
perform bad with at least a few students. It could happen that by chance a sequence would get
those few students at the beginning. A different sequence might get those few students at the end,
and will perform better on average at the beginning in comparison. Due to the directed search of
the genetic algorithm, it might take some time before a sequence is granted enough opportunities
to correct the quality estimate.

The parameters of the genetic algorithm were set to stimulate quick convergence. The underlying
argument was that it was unclear how many participants would be available to support the TutOER
system in showing the desired effect. As a result, the populations very quickly only contained very
few unique sequences. This severly limited the exploration opportunities. In part, the parameters
setting the population size and number of episodes were responsible for this. However, an additional
factor was the implementation of parent selection. The roulette wheel requires the fitness values
to be normalized between 0 and 1. Normalization was done using a straightforward approach of
dividing each fitness value by the maximum fitness value in the selection. Negative fitness values
were set to zero and thus had no chance of being selected. It seemed like a sensible idea at the time to
only select from sequences that actually caused some improvement. However, based on the observed
variance of the fitness values, this might have been responsible for the elimination of good candidates.

The problem of premature elimination is of course also an issue for a normal teacher evaluat-
ing educational material. In fact, this is true for every one-armed bandid situation where there
is a trade-off between exploration and exploitation in a noisy environment. The solution appears
straightforward, but it comes with a cost. The solution is to evaluate sequences more often before
making a selection. The parameter that influences that directly is the number of episodes. That
parameter was set to a low value for the experiment, which also becomes clear from the results.
Raising it would however also inevitably raise the regret built-up from sequences that turn out to be
bad. A more indirect parameter is the number of individuals in the population. A larger population
would increase the chance of any individual to be selected. In particular if that would be combined
with a different approach to parent selection that deals with negative fitness differently. More
diversity in the population would slow down the convergence of the genetic algorithm. However,
due to UCB-1 selection, the exploration versus exploitation trade-off would be better managed.

From the data collected in this thesis, it is not possible to know if the TutOER system did
indeed find the optimal sequences. In other words, it is unknown how bad the fitness estimates
are. The author proposes an additional benchmarking experiment to retrieve that information. A
simple approach would be to evaluate all sequences a certain number of times. Based on the large
variance in the observed fitness values, each sequence would need to be evaluated at least fifty times.
That would however require 2000 participants for both the low and high student group. Lowering
the variance could perhaps be done with a more elaborate set of questions for the benchmark,
which would at least be less sensitive to random mistakes of participants. Unfortunately, the main
source of the variance is likely to be the heterogeneous collection of participants in one student
group. Ultimately, students should be differentiated into more different groups as to create more
homogeneous collections of participants. However, that would require to redo the experiment
described in this thesis with the new student groups.

Apart from comparison with an extensive benchmark, it is also interesting to compare this approach
with one that only uses UCB. The genetic algorithm now serves as a “smart” filter for UCB with
the purpose of speeding up the search. The rationale behind this is that unlike UCB, the genetic
algorithm generalizes implicitly by selection and cross-over. In particular because a sequence can
be represented by chromosome in a natural manner, which would allow for meaningful direction
of the search. As a result some areas of the search space do not need to be explored. This is of
course only beneficial if the genetic algorithm is effective. It therefore makes sense to run the same
experiment with a setup where only UCB selection is used to pick sequences. The regret will in the
beginning almost certainly be much higher, but it may prove to be more effective afterwards.

CHAPTER 9. CONCLUSION / DISCUSSION 58

In conclusion, this thesis presented and tested a possible approach to the incorperation of learning
impact in assessment of OER quality. Although many lessons can be learned, the results of the
simulation and the experiment show that the principle works, in spite of a limited and mostly
diverse collection of participants. The author recommends the field concerning OER quality to
search for improvements of and alternatives for this approach. It is essential for the feasibillity of
truly open collections of OER to take into account the impact an OER has on learning. After all,
that is why we want to have open educational resources in the first place.

Bibliography

[1] Ad Aerts, David Smits, Natalia Stash, and Paul De Bra. Aha! version 2.0, more adapta-
tion flexibility for authors. In World Conference on E-Learning in Corporate, Government,
Healthcare, and Higher Education, volume 1, pages 240–246, 2002.

[2] Sarab Al-Muhaideb and Mohamed El Bachir Menai. Evolutionary computation approaches to
the curriculum sequencing problem. Natural Computing, 10(2):891–920, 2011.

[3] Daniel Ewell Atkins, John Seely Brown, and Allen L Hammond. A review of the open
educational resources (OER) movement: Achievements, challenges, and new opportunities.
Creative common, 2007.

[4] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2-3):235–256, 2002.

[5] Charles L. Bouton. Nim, a game with a complete mathematical theory. Annals of Mathematics,
3(1/4):pp. 35–39, 1901.

[6] Peter Brusilovsky and Nicola Henze. Open Corpus Adaptive Educational Hypermedia. In
Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, editors, The Adaptive Web, volume 4321
of Lecture Notes in Computer Science, pages 671–696. Springer Berlin Heidelberg, 2007.

[7] Peter Brusilovsky and Christoph Peylo. Adaptive and intelligent web-based educational systems.
International Journal of Artificial Intelligence in Education, 13(2):159–172, 2003.

[8] Peter Brusilovsky and Julita Vassileva. Course sequencing techniques for large-scale web-based
education. International Journal of Continuing Engineering Education and Life Long Learning,
13(1):75–94, 2003.

[9] Peter Brusilovsky, Elmar Schwarz, and Gerhard Weber. ELM-ART: An intelligent tutoring
system on World Wide Web. In Intelligent tutoring systems, pages 261–269. Springer, 1996.

[10] Peter L Brusilovsky. A framework for intelligent knowledge sequencing and task sequencing.
In Intelligent tutoring systems, pages 499–506. Springer, 1992.

[11] Jet Bussemaker. Kamerbrief over digitalisering van het hoger onderwijs. Kamer-
brief, Ministerie van Onderwijs, Cultuur en Wetenschap, 1 2014. URL http:

//www.rijksoverheid.nl/documenten-en-publicaties/kamerstukken/2014/01/08/

kamerbrief-over-digitalisering-van-het-hoger-onderwijs.html.

[12] A. F. Camilleri, U. D. Ehlers, and J. Pawlowski. State of the Art Review of Quality Is-
sues related to Open Educational Resources (OER). JRC Scientific and policy reports,
European Commission, 2014. URL http://is.jrc.ec.europa.eu/pages/EAP/documents/

201405JRC88304.pdf.

[13] Cristian Cechinel, Salvador Sánchez-Alonso, and Miguel Ángel Sicilia. Empirical analysis of
errors on human-generated learning objects metadata. In Metadata and semantic research,
pages 60–70. Springer, 2009.

[14] Cristian Cechinel, Salvador Sánchez-Alonso, and Elena Garćıa-Barriocanal. Statistical profiles
of highly-rated learning objects. Computers & Education, 57(1):1255–1269, 2011.

59

http://www.rijksoverheid.nl/documenten-en-publicaties/kamerstukken/2014/01/08/kamerbrief-over-digitalisering-van-het-hoger-onderwijs.html
http://www.rijksoverheid.nl/documenten-en-publicaties/kamerstukken/2014/01/08/kamerbrief-over-digitalisering-van-het-hoger-onderwijs.html
http://www.rijksoverheid.nl/documenten-en-publicaties/kamerstukken/2014/01/08/kamerbrief-over-digitalisering-van-het-hoger-onderwijs.html
http://is.jrc.ec.europa.eu/pages/EAP/documents/201405JRC88304.pdf
http://is.jrc.ec.europa.eu/pages/EAP/documents/201405JRC88304.pdf

BIBLIOGRAPHY 60

[15] Cristian Cechinel, Sandro da Silva Camargo, Xavier Ochoa, MA Sicilia, and S Sanchez-Alonso.
Populating learning object repositories with hidden internal quality information. In Proceedings
of the 2nd Workshop on Recommender Systems for Technology Enhanced Learning (RecSysTEL
2012). Manouselis, N., Draschler, H., Verber, K., and Santos, OC (Eds.). Published by CEUR
Workshop Proceedings, volume 896, pages 11–22, 2012.

[16] Chih-Ming Chen. Intelligent web-based learning system with personalized learning path
guidance. Computers & Education, 51(2):787–814, 2008.

[17] Chih-Ming Chen. Ontology-based concept map for planning a personalised learning path.
British Journal of Educational Technology, 40(6):1028–1058, 2009.

[18] Min Chi, Kurt VanLehn, and Diane Litman. Do micro-level tutorial decisions matter: Applying
reinforcement learning to induce pedagogical tutorial tactics. In Intelligent Tutoring Systems,
pages 224–234. Springer, 2010.

[19] Doug Clow. An overview of learning analytics. Teaching in Higher Education, 18(6):683–695,
2013. doi: 10.1080/13562517.2013.827653.

[20] Betty Collis and Allard Strijker. Technology and human issues in reusing learning objects.
Journal of interactive media in education, 2004(1), 2004.

[21] Luis de Marcos, JJ Martinez, JA Gutierrez, et al. Competency-based learning object sequencing
using particle swarms. In Tools with Artificial Intelligence, 2007. ICTAI 2007. 19th IEEE
International Conference on, volume 2, pages 111–116. IEEE, 2007.

[22] Luis De-Marcos, José-Javier Mart́ınez, José Antonio Gutierrez, Roberto Barchino, and
José Maŕıa Gutiérrez. A new sequencing method in web-based education. In Evolution-
ary Computation, 2009. CEC’09. IEEE Congress on, pages 3219–3225. IEEE, 2009.

[23] Erik Duval. Learnrank: Towards a real quality measure for learning. In Handbook on quality
and standardisation in E-learning, pages 457–463. Springer, 2006.

[24] Erik Duval and David Wiley. Guest Editorial: Open Educational Resources. IEEE Transactions
on Learning Technologies, 3(2):83–84, 2010. ISSN 1939-1382.

[25] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Natural Computing.
Springer-Verlag, Berlin, 2007.

[26] John Hilton III, David Wiley, Jared Stein, and Aaron Johnson. The four ’R’s of openness and
ALMS analysis: frameworks for open educational resources. Open Learning, 25(1):37–44, 2010.

[27] J. H. Holland. Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence. Bradford Books. MIT Press, 1992.
ISBN 9780262581110.

[28] Anna Hovakimyan, Siranush Sargsyan, and Sergey Barkhoudaryan. Genetic algorithm and the
problem of getting knowledge in e-learning systems. In Advanced Learning Technologies, 2004.
Proceedings. IEEE International Conference on, pages 336–339. IEEE, 2004.

[29] Mu-Jung Huang, Hwa-Shan Huang, and Mu-Yen Chen. Constructing a personalized e-learning
system based on genetic algorithm and case-based reasoning approach. Expert Systems with
Applications, 33(3):551–564, 2007.

[30] Jan Hylén, Dirk van Damme, Fred Mulder, and Susan D’Antoni. Open Educational Resources:
Analysis of Responses to the OECD Country Questionnaire. Technical report, OECD, 06 2012.

[31] Larry Johnson, Samantha Adams, Malcolm Cummins, Victoria Estrada, Alex Freeman, and
Holly Ludgate. The NMC horizon report: 2013 higher education edition. Technical report,
New Media Consortium, 2013.

BIBLIOGRAPHY 61

[32] Robin H Kay and Liesel Knaack. Evaluating the learning in learning objects. Open Learning,
22(1):5–28, 2007.

[33] Kenneth R Koedinger, Emma Brunskill, Ryan SI d Baker, Elizabeth A McLaughlin, and
John Stamper. New potentials for data-driven intelligent tutoring system development and
optimization. AI Magazine, 34(3), 2013.

[34] Milos Kravcik, Marcus Specht, and Reinhard Oppermann. Evaluation of winds authoring
environment. In Adaptive Hypermedia and Adaptive Web-Based Systems, pages 166–175.
Springer, 2004.

[35] Michael EN Majerus. Industrial melanism in the peppered moth, biston betularia: an excellent
teaching example of darwinian evolution in action. Evolution: Education and Outreach, 2(1):
63–74, 2009.

[36] Nikos Manouselis, Hendrik Drachsler, Riina Vuorikari, Hans Hummel, and Rob Koper. Recom-
mender systems in technology enhanced learning. In Recommender systems handbook, pages
387–415. Springer, 2011.

[37] Julie A Marsh, John F Pane, and Laura S Hamilton. Making sense of data-driven decision
making in education. Technical report, Rand Corporation, 2006.

[38] Worthy N Martin, Jens Lienig, and James P Cohoon. Island (migration) models: evolutionary
algorithms based on punctuated equilibria. Handbook of evolutionary computation, 6(3), 1997.

[39] Rory McGreal. Learning objects: A practical definition. International Journal of Instructional
Technology and Distance Learning (IJITDL), 9(1), 2004.

[40] Mariusz Nowostawski and Riccardo Poli. Parallel genetic algorithm taxonomy. In Knowledge-
Based Intelligent Information Engineering Systems, 1999. Third International Conference,
pages 88–92. IEEE, 1999.

[41] Xavier Ochoa and Erik Duval. Use of contextualized attention metadata for ranking and recom-
mending learning objects. In Proceedings of the 1st international workshop on Contextualized
attention metadata: collecting, managing and exploiting of rich usage information, pages 9–16.
ACM, 2006.

[42] Xavier Ochoa and Erik Duval. Quantitative analysis of learning object repositories. Learning
Technologies, IEEE Transactions on, 2(3):226–238, 2009.

[43] Xavier Ochoa and Erik Duval. Automatic evaluation of metadata quality in digital repositories.
International Journal on Digital Libraries, 10(2-3):67–91, 2009.

[44] OECD. Giving Knowledge for Free: The Emergence of Open Educational Re-
sources. Technical report, OECD, 2007. URL http://www.oecd.org/edu/ceri/

givingknowledgeforfreetheemergenceofopeneducationalresources.htm.

[45] Clark Quinn and Samantha Hobbs. Learning objects and instruction components. Educational
Technology & Society, 3(2):13–20, 2000.

[46] Azough Samia and Bellafkih Mostafa. Re-use of resources for adapted formation to the learner.
In Computational Intelligence and Intelligent Informatics, 2007. ISCIII’07. International
Symposium on, pages 213–217. IEEE, 2007.

[47] Kazuya Seki, Tatsunori Matsui, and Toshio Okamoto. An adaptive sequencing method of the
learning objects for the e-learning environment. Electronics and Communications in Japan
(Part III: Fundamental Electronic Science), 88(3):54–71, 2005.

[48] Miguel A Sicilia, Elena Garcia, Carmen Pagés, and Jose J Martinez. Complete metadata
records in learning object repositories: some evidence and requirements. International Journal
of Learning Technology, 1(4):411–424, 2005.

http://www.oecd.org/edu/ceri/givingknowledgeforfreetheemergenceofopeneducationalresources.htm
http://www.oecd.org/edu/ceri/givingknowledgeforfreetheemergenceofopeneducationalresources.htm

BIBLIOGRAPHY 62

[49] James P Spillane. Data in practice: Conceptualizing the data-based decision-making phenomena.
American Journal of Education, 118(2):113–141, 2012.

[50] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learning. MIT Press,
1998.

[51] Alice Tani, Leonardo Candela, and Donatella Castelli. Dealing with metadata quality: The
legacy of digital library efforts. Information Processing & Management, 49(6):1194–1205, 2013.

[52] UNESCO. Forum on the impact of Open Courseware for higher education in developing
countries. Final report, UNESCO, 2002. URL http://unesdoc.unesco.org/images/0012/

001285/128515e.pdf.

[53] Kurt Vanlehn. The behavior of tutoring systems. International journal of artificial intelligence
in education, 16(3):227–265, 2006.

[54] Katrien Verbert, Xavier Ochoa, Michael Derntl, Martin Wolpers, Abelardo Pardo, and Erik
Duval. Semi-automatic assembly of learning resources. Computers & Education, 59(4):
1257–1272, 2012.

[55] Jeffrey C Wayman. Involving teachers in data-driven decision making: Using computer data
systems to support teacher inquiry and reflection. Journal of Education for Students Placed at
Risk, 10(3):295–308, 2005.

[56] Martin Weller. Big and little OER. 2010 Proceedings. Barcelona: UOC, OU, BYU. [Accessed:
25/05/14]., 2010. URL http://hdl.handle.net/10609/4851.

[57] Darrell Whitley, Soraya Rana, and Robert B Heckendorn. The island model genetic algorithm:
On separability, population size and convergence. Journal of Computing and Information
Technology, 7:33–48, 1999.

[58] David Wiley, T.J. Bliss, and Mary McEwen. Open Educational Resources: A Review of the
Literature. In J. Michael Spector, M. David Merrill, Jan Elen, and M. J. Bishop, editors,
Handbook of Research on Educational Communications and Technology, pages 781–789. Springer
New York, 2014. ISBN 978-1-4614-3184-8. doi: 10.1007/978-1-4614-3185-5 63. URL http:

//dx.doi.org/10.1007/978-1-4614-3185-5_63.

[59] Nicolai van der Woert, Ria Jacobi, and Hester Jelgerhuis, editors. 2014 Open Education Trend
Report, 3 2014. URL http://www.surf.nl/trendreportopeneducation2014.

[60] Li Yuan and Stephen Powell. MOOCs and open education: Implications for higher education.
Cetis White Paper, 2013.

[61] Robert Zemsky and William F Massy. Thwarted innovation. What happened to e-learning and
why, A final report for the Weather station Project of the Learning Alliance at the University
of Pennsylvania in cooperation with the Thomson Corporation, Pennsylvania, 2004.

http://unesdoc.unesco.org/images/0012/001285/128515e.pdf
http://unesdoc.unesco.org/images/0012/001285/128515e.pdf
http://hdl.handle.net/10609/4851
http://dx.doi.org/10.1007/978-1-4614-3185-5_63
http://dx.doi.org/10.1007/978-1-4614-3185-5_63
http://www.surf.nl/trendreportopeneducation2014

A

Database

Figure A.1: Entity relationship schema of the database

63

B

Nim Course Material

B.1 Interactive Nim Exercises

Resources can contain a script that allows the student to play the nim game. The interface depicts
each stack as an orange box of which the height is linked to the number of objects on that stack.
The student can click on one of these orange boxes to be prompted for the number of objects to
remove. Only valid input is allowed in this prompt, meaning that a student is also not capable of
taking nothing or even taking more objects than exist on the stack. The visualisation for the nim
game with stacks of two, one and two objects is as follows.

After the student made a move, a computer player automatically makes a counter move. This
continues until one of the two players won. The computer player will always attempt to make
the optimal move using the nim-sum operator. If there are multiple moves possible given the
winning strategy, the computer player picks the first. When faced with an unwinnable situation,
the computer selects a stack at random and either removes all objects or all but one, depending on
the parity of the number of stacks and the number of objects left on the stack. The strategy in
an unwinnable situation is not part of the standard nim-sum strategy, but was added to force a
student to play a perfect game throughout.

When the nim game is over, the students receives feedback about the outcome of the game
and is presented with an opportunity to play another randomly generated game. The feedback is
shown as follows.

B.2 Rules of the game

B.2.1 Resource 1

This resource is shown in Figure B.1 contains the following text: Nim is a game in which two
players take turns removing objects from distinct heaps. On each turn, a player must remove at
least one object, and may remove any number of objects provided they all come from the same heap.
The normal game is between two players and played with three heaps of any number of objects. The

64

APPENDIX B. NIM COURSE MATERIAL 65

Figure B.1: Resource 1 covers the rules of the
game

Figure B.2: Resource 2 covers the
rules of the game

Figure B.3: Resource 3 covers the rules of the
game

Figure B.4: Resource 4 covers the
rules of the game

two players alternate taking any number of objects from any single one of the heaps. The goal is to
be the last to take an object.

B.2.2 Resource 2

The resource shown in Figure B.2 plays the Youtube video zEpXIoF2nwk made by Paul Gafni,
which explains the rules by showing an example game. It is a video clip from a larger collection of
nim lessons created by the same author. The clip is displayed in an embedded Youtube player.

B.2.3 Resource 3

The third resource that covers the rules of the game is shown in Figure B.3 and contains a textual
explanation in three points. One, The game of Nim is played with two players that each in turn
can take away objects from a single stack. Two, Each turn a player needs to take away at least one
object. Three, The player that takes away the last object on the table wins.

B.2.4 Resource 4

The last resource that covers the rules of the game is shown in Figure B.4 and contains a very brief
textual explanation. You can only take away objects from one stack. The last person to take away
an object wins.

B.3 Intuition

B.3.1 Resource 5

Figure B.5 shows the resource that allows the student to play the nim game using the script defined
in SectionB.1. The configuration of stacks should be simple enough for most students to be able to
imagine the consequences of an action. The winning sequence of moves is typically three moves long
for the student. The configuration is generated randomly in such a way that each stack contains
between one and three objects, with two stacks having the identical number of objects. The latter
requirements ensures that the game is winnable by the student and that a more advanced nim-sum
strategy is not yet necessary.

The nim game interface is also explained in the resource with an introduction.

APPENDIX B. NIM COURSE MATERIAL 66

Figure B.5: Resource 5 covers the intuition behind a winning strategy for the game nim

Figure B.6: Resource 6 covers the intuition behind a winning strategy for the game nim

This is a game of Nim. The orange rectangles represent stacks of objects. The number of objects
on the stack is shown by the white number in the stack. You can take objects off a stack by
clicking on it. You will then be asked how many objects you want to take. After you have made a
move, your artificial counter player will make one as well. The game ends when either of you won.

You can keep playing these nim games as long as you want. If you think you are
ready, click on the button below.

APPENDIX B. NIM COURSE MATERIAL 67

Figure B.7: Resource 7 covers the intuition behind a winning strategy for the game nim

Figure B.8: Resource 8 covers the intuition behind a winning strategy for the game nim

B.3.2 Resource 6

A resource shown in Figure B.6 that describes the optimal actions for three example scenarios. The
described actions are all aimed at achieving a situation with two identical stacks on the table for
the other player. Regardless of what the other player takes away, you can mimic the action for the
other stack and end up taking the last object. The first scenario depicts two equal stacks and one
bigger stack. The second scenario depicts two equal stacks and one smaller stack. The last scenario
depicts three equal stacks.

B.3.3 Resource 7

Figure B.7 shows a resource that gives a textual explanation of the intuitive strategy of enforcing
two equal stacks on the opponent. This is formulated as follows.

In simple situations such as three nonempty stacks of which two are identical, there is an easy
strategy: take away all objects from the stack that is different. The intuition is that when the
opponent is confronted with a situation where there are only two identical stacks left, he can
either pick everything from a stack (leaving you a winning situation) or pick only a part of it
(leaving you a situation where you can created two identical stacks again).

APPENDIX B. NIM COURSE MATERIAL 68

B.3.4 Resource 8

The resource shown in Figure B.8 has an embedded video player which shows a video explanation
made by Paul Gafni1. The video demonstrates in a walkthrough of the game the kind of reasoning
a player must use to decide what move to make.

B.4 Binary numbers

Figure B.9: Resource 9 covers the conversion of binary numbers to their decimal form.

Figure B.10: Resource 10 covers the conversion of binary numbers to their decimal form.

B.4.1 Resource 9

Figure B.9 shows a resource that lists four example conversions between decimal and binary
numbers, describes the meaning of having a 1 in a particular position of a binary number and walks
through the conversion of three binary numbers to their decimal counterparts. Throughout these

1Source: https://www.youtube.com/channel/UC3EadMDqZmJVJ2f43QSzIRQ

https://www.youtube.com/channel/UC3EadMDqZmJVJ2f43QSzIRQ

APPENDIX B. NIM COURSE MATERIAL 69

Figure B.11: Resource 11 covers the conversion of binary numbers to their decimal form.

Figure B.12: Resource 12 covers the conversion of binary numbers to their decimal form.

different presentations a student could find the decimal numbers one through ten and their binary
counterparts.

B.4.2 Resource 10

The resource shown in Figure B.10 lists four examples of decimal numbers and their binary
counterparts. The decimal numbers listed were one, three, six and nine.

B.4.3 Resource 11

A resource that shows a video made by Marija Kero of eHow2 is shown in Figure B.11. The video
shows how to calculate the conversion of a binary number to its decimal form, by demonstrating
this for two examples. The video is displayed without any description.

B.4.4 Resource 12

The resource shown in Figure B.12 contains an adapted version of the definition of a binary number
given by an online dictionary3. The adaptation contains two mistakes. The last two powers of two
do not have a superscript display of the power, making it potentially confusing. This was however
only discovered till late in the experiment by the author. The late discovery combined with the
notion that these type of mistakes are very common in any large collection of educational material
resulted in the decision to leave it like this.

2Source: https://www.youtube.com/user/eHowFamily
3http://dictionary.reference.com/browse/binary

https://www.youtube.com/user/eHowFamily
http://dictionary.reference.com/browse/binary

APPENDIX B. NIM COURSE MATERIAL 70

A binary number is expressed in a system of numerical notation to the base 2, in which each
place of a number, expressed as 0 or 1, corresponds to a power of 2. The decimal number 58
appears as 111010 in binary notation, since 58 = 1×25 +1×24 +1×23 +0×22 +1×21+0×20

B.5 Nim-Sum

Figure B.13: Resource 13 covers the nim-sum by means of pair cancelling

Figure B.14: Resource 14 covers the nim-sum by means of pair cancelling

B.5.1 Resource 13

The resource shown in Figure B.13 contains an extremely brief textual explanation of pair cancelling,
in the following words.

The winning strategy is for a player to always leave an even total number of power of two’s.

B.5.2 Resource 14

Figure B.14 shows a resource that describes pair cancelling in one line and then applies that in an
example. The stacks in the example contain three, four and five objects. The resource only shows
the first next move the player should make, which is take 2 objects from the first stack.

APPENDIX B. NIM COURSE MATERIAL 71

Figure B.15: Resource 15 covers the nim-sum by means of pair cancelling. This screenshot is the
first part of three screenshots of this resource.

Figure B.16: Resource 15 covers the nim-sum by means of pair cancelling. This screenshot is the
second part of three screenshots of this resource.

B.5.3 Resource 15

Figure B.15, Figure B.16 and Figure B.17 are screenshots of a resource that gives the following
step-by-step description of how to apply pair cancelling.

1. Write down the number of objects in each stack underneath each other in their binary

APPENDIX B. NIM COURSE MATERIAL 72

Figure B.17: Resource 15 covers the nim-sum by means of pair cancelling. This screenshot is the
last part of three screenshots of this resource.

representation, such that each column of digits represents the same power of two.

2. Count the total number of 1’s in each column.

3. The goal is to make sure that after you made your move, all columns have an even total
number of 1’s.

4. Return to step 1, until the game ends.

Furthermore it provides an explicit walkthrough of each of these steps for two examples. One
containing three stacks of three, four and five objects, and one containing four stacks of two, four,
five and five objects.

B.5.4 Resource 16

This last resource for the Nim-Sum knowledge component takes a different approach where the
nim-sum is explained using the application of the binary XOR operation, which essentially is what
the nim-sum operation really is. The description originates from the English Wikipedia article4

about Nim. Figure B.18 shows a screenshot of this resource.

4http://en.wikipedia.org/wiki/Nim

http://en.wikipedia.org/wiki/Nim

APPENDIX B. NIM COURSE MATERIAL 73

Figure B.18: Resource 16 covers the nim-sum by means of XOR calculations

C

Nim Test Questions

C.1 Rules of Nim

1. Can you take objects from more than one stack?

• I have no idea

• No, you can only take one object at a time

• No, you can only take objects from a single stack

• Yes, you are allowed to do that

• Yes, but only if there are not enough objects on one stack

2. Bob and John are playing the normal version of a Nim game. John takes the last object
on table. Who won?

• I have no idea.

• Bob won

• John won

• Nobody won yet

• That depens on whether it was John’s second turn

3. How many objects are you allowed to take away from a stack?

• I have no idea.

• Exactly one object.

• You have to take all the objects of that stack that you chose.

• You have to take at least one object.

C.2 Intuition

1. On the table are three stacks. The first stack is empty, the second stack has two objects
and the third stack has one object. What is the best move to make?

• I have no idea.

74

APPENDIX C. NIM TEST QUESTIONS 75

• Take one object from the second stack

• Take two objects from the second stack

• Take one object from the third stack

2. On the table are three stacks. The first stack has two objects. The second stack has two
objects. The third stack has one object. What is the best move to make?

• I have no idea.

• Take one object from the first stack

• Take two objects from the first stack

• Take one object from the second stack

• Take two objects from the second stack

• Take one object from the third stack

3. On the table are three stacks. All stacks have two objects. What is the best move to
make?

• I have no idea.

• Take one object from any single stack

• Take two objects from any single stack

C.3 Binary numbers

1. What is the binary representation of the decimal number 10?

• I have no idea.

• 0010

• 1000

• 1010

• 1111111111

• 0000000010

2. What is the decimal representation of the binary number 1000?

• I have no idea.

• 1

• 4

• 8

• 1000

3. Which number is bigger, the binary number 1001 or the decimal number 1001?

• I have no idea.

• The binary number is bigger.

• The decimal number is bigger.

• They are equal.

APPENDIX C. NIM TEST QUESTIONS 76

C.4 Nim-Sum

1. On the table are three stacks. The first stack has 10 objects. The second stack has 8
objects. The third stack has 6 objects. From which stack do you take objects when
making an optimal move?

• I have no idea.

• The first stack.

• The second stack.

• The third stack.

• Any stack will do.

2. On the table are three stacks. The first stack has 10 objects. The second stack has 8
objects. The third stack has 6 objects. How many objects will you take from a stack
when making an optimal move?

• I have no idea.

• Two objects.

• Four objects.

• Six objects.

• Eight objects.

3. On the table are five stacks. The first stack has 9 objects, the second 8, the third 7, the
fourth 6 and the fift stack has 5 objects. Which move will you make?

• I have no idea.

• Nine objects from the first stack.

• Eight objects from the second stack.

• Seven objects from the third stack.

• Six objects from the fourth stack.

• Five objects from the fift stack.

D

Simulation Convergence Data

Table D.1: Simulation convergence results of ten repetitions in the normal environment

Setup 1 2 3 4 5 6 7 8 9 10
pop5ep5 79 19 34 20 19 17 19 24 19 64
pop5ep10 19 29 19 39 49 19 19 19 19 99
pop5ep20 29 769 29 89 89 89 29 33 69 29
pop10ep10 25 29 19 29 25 39 19 31 29 19
pop10ep20 49 37 29 35 29 29 39 32 29 34
pop20ep20 39 29 35 32 43 41 35 41 33 43
el0mu05 19 27 23 19 25 27 19 27 29 19
el2mu25 29 22 31 19 47 69 53 33 31 23
el0mu25 30 23 40 29 25 21 32 39 41 30
el1mu05 27 23 27 23 23 19 27 27 35 19
el1mu25 22 33 23 30 40 27 29 29 21 19
el2mu05 23 32 27 23 21 23 19 27 19 27

Table D.2: Simulation convergence results of ten repetitions in the noisy environment

Setup 1 2 3 4 5 6 7 8 9 10
pop5ep10 19 19 19 139 19 19 69 23 19 23
pop10ep10 19 19 19 19 29 19 29 27 29 19
pop5ep20 49 29 649 49 91 69 33 33 29 29
pop10ep20 69 37 29 29 29 37 29 38 49 35
pop20ep20 36 51 29 43 49 55 41 57 41 41
pop5ep5 94 24 19 24 37 23 19 26 19 25
el0mu05 31 27 27 19 23 29 27 19 27 79
el2mu25 25 19 61 29 59 29 27 29 19 29
el0mu25 39 29 29 29 38 19 25 29 28 27
el1mu05 29 31 31 27 26 21 40 37 40 33
el1mu25 29 27 31 25 29 26 27 27 29 37
el2mu05 25 29 29 19 28 19 26 27 19 29

77

	List of Figures
	List of Tables
	Introduction
	Background
	Open Educational Resources
	Automatic assessment of OER Quality
	Curriculum Sequencing

	OER Sequencing
	Educational context
	Multiple objectives of OER sequencing

	Approach
	The Genetic Algorithm
	Applying the genetic algorithm

	Software
	Interface
	Tutor Module
	GA Module
	Monitor Module
	Logging Module
	Bootstrap values after restart

	Simulations
	Parameters
	Simulation setups
	General setup
	Results

	Experimental setup
	Experiment
	Genetic algorithm setup
	Evaluation

	Results
	Lesson: Rules
	Lesson: Intuition
	Lesson: Binary
	Lesson: Nim-sum

	Conclusion / Discussion
	Bibliography
	Database
	Nim Course Material
	Interactive Nim Exercises
	Rules of the game
	Intuition
	Binary numbers
	Nim-Sum

	Nim Test Questions
	Rules of Nim
	Intuition
	Binary numbers
	Nim-Sum

	Simulation Convergence Data

