
Monte Carlo Tree Search with Options
for General Video Game Playing

Maarten de Waard
University of Amsterdam

Science Park 904
Amsterdam, Netherlands

Email: mrtndwrd@gmail.com

Diederik M. Roijers
University of Oxford

Wolfson Building, Parks Road
Oxford, United Kingdom

Email: Diederik.Roijers@cs.ox.ac.uk

Sander C.J. Bakkes
Tilburg University

Warandelaan 2, Dante Building
Tilburg, Netherlands

Email: S.C.J.Bakkes@uvt.nl

Abstract—General video game playing is a challenging re-
search area in which the goal is to find one algorithm that
can play many games successfully. “Monte Carlo Tree Search”
(MCTS) is a popular algorithm that has often been used for
this purpose. It incrementally builds a search tree based on
observed states after applying actions. However, the MCTS
algorithm always plans over actions and does not incorporate
any higher level planning, as one would expect from a human
player. Furthermore, although many games have similar game
dynamics, often no prior knowledge is available to general video
game playing algorithms. In this paper, we introduce a new
algorithm called “Option Monte Carlo Tree Search” (O-MCTS).
It offers general video game knowledge and high level planning
in the form of “options”, which are action sequences aimed at
achieving a specific subgoal. Additionally, we introduce “Option
Learning MCTS” (OL-MCTS), which applies a progressive
widening technique to the expected returns of options in order
to focus exploration on fruitful parts of the search tree. Our new
algorithms are compared to MCTS on a diverse set of twenty-
eight games from the general video game AI competition. Our
results indicate that by using MCTS’s efficient tree searching
technique on options, O-MCTS outperforms MCTS on most of
the games, especially those in which a certain subgoal has to be
reached before the game can be won. Lastly, we show that OL-
MCTS improves its performance on specific games by learning
expected values for options and moving a bias to higher valued
options.

I. INTRODUCTION

Recent game programming research focusses on algorithms
capable of solving several games with different types of
objectives. A common approach is to use a tree search in order
to select the best action for any given game state. In every new
game state, the tree search is restarted until the game ends. A
popular example is Monte Carlo tree search (MCTS).

A method to test the performance of a general video game
playing algorithm is by using the framework of the general
video game AI (GVGAI) competition [1]. In this competition,
algorithm designers can test their algorithms on a set of diverse
games. When submitted to the competition, the algorithms are
applied to an unknown set of games in the same framework
to test their general applicability. Many of the algorithms
submitted to this contest rely on a tree search method.

A limitation in tree search algorithms is that since many
games are too complex to plan far ahead in a limited time
frame, many of these algorithms incorporate a maximum

search depth. As a result, tree search based methods often only
consider short-term score differences and do not incorporate
long-term plans. Moreover, many algorithms lack common
video game knowledge and do not use any of the knowledge
gained from the previous games.

In contrast, when humans play a game we expect them to
make assumptions about its mechanics, e.g., pressing the left
button often results in the player’s avatar moving to the left on
the screen. Furthermore, we expect human players to define
specific subgoals for themselves, e.g., when there is a portal on
screen, a player is likely to try to find out what the portal does
by walking towards it. The player will remember the effect of
this and use that information for the rest of the game.

In certain situations it is clear how such a subgoal can be
achieved and a policy, which defines which actions to take in
which state, can be defined to achieve it. A policy to achieve
a specific subgoal is called an option [2]. Thus, an option
selects an action, given a game state, that aims at satisfying
its subgoal. In this paper, options are game-independent. The
options are expected to guide the exploration of a game’s
search space to feasible areas.

We propose a new algorithm called option Monte Carlo tree
search (O-MCTS) that extends MCTS to use options. Because
O-MCTS chooses between options rather than actions when
playing a game, we expect it to be able to plan more efficiently,
at a higher level of abstraction. Furthermore, we introduce
option learning MCTS (OL-MCTS), an extension of O-MCTS
that approximates which of the available options work well
for the game it is playing. This can be used to shift the focus
of the tree search exploration to more promising options. This
information can be transferred to subsequent levels in order to
increase performance.

We compare our algorithms to MCTS on games from the
GVGAI competition. Our results indicate that the O-MCTS
and OL-MCTS algorithms outperform MCTS in games that
require a high level of action planning, e.g., games in which
something has to be picked up before a door can be opened. In
most other games, O-MCTS and OL-MCTS perform at least
as well as MCTS.
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Fig. 1. One MCTS iteration. This process is repeated in order to improve the
estimates of action values. Circles represent states, edges represent actions.

II. BACKGROUND

We first explain the most important concepts needed to
understand the algorithms that are proposed in this paper. We
first describe Markov decision processes (MDPs), then MCTS,
then options and finally the video game description language
(VGDL).

A. Markov Decision Processes

We treat games as MDPs, which provide a mathematical
framework for use in decision making problems. An MDP is
a tuple 〈S,A, T,R〉, where S denotes the set of states, A is the
set of possible actions, T is the transition function and R is the
reward function. Since an MDP is fully observable, a state in S
contains all the information of the game’s current condition:
locations of sprites like monsters and portals; the location,
direction and speed of the avatar; which resources the avatar
has picked up; etcetera. A is a finite set of actions, the input
an agent can deliver to the game. T is a transition function
defined as T : S×A×S → [0, 1]; it specifies the probabilities
over the possible next states, when taking an action in a state.
R is a reward function defined as R : S × A × S → R.
When the game score changes, the difference is viewed as the
reward. Algorithms maximize the cumulative reward. In the
scope of this paper algorithms only observe state transitions
and rewards when they happen and do not have access to T
and R.

B. Monte Carlo Tree Search

The success of MCTS started in 2006, when the tree search
method and UCT formula were introduced, yielding good
results in Computer Go [3]. Since 2006, the algorithm has been
extended with many variations. It is still being used for other
computer games [4], including the GVGAI competition [5]. In
this paper, we use MCTS as the basis for the new algorithms.

This section explains how MCTS approximates action val-
ues for states. A tree is built incrementally from the states
and actions that are visited in a game. Each node in the
tree represents a state and each edge represents an action
taken in that state. MCTS consists of four phases that are
constantly repeated, as depicted in Figure 1. The root node
of the tree represents the current game state, Then, the first
action is chosen by an expansion strategy and subsequently
simulated. This results in a new game state, for which a node
is created. After expansion, a rollout is done from the new

node, which means that a simulation is run from that node,
applying random actions until a predefined stop criterion is
met. Finally, the score difference resulting from the rollout is
backed up to the root node, which means that the reward is
saved to all visited nodes, after which a new iteration starts.
When all actions are expanded in a node, that node is deemed
fully expanded. This means that MCTS will use its selection
strategy to select child nodes until a node is selected that is
not fully expanded. Then, the expansion strategy is used to
create a new node, after which a rollout takes place and the
results are backed up.

The selection strategy selects optimal actions in internal tree
nodes by analyzing the values of their child nodes. An effective
selection strategy is UCT, which employs an exploration bonus
to balance the choice between poorly explored actions with a
high uncertainty about their value and actions that have been
explored extensively, but have a higher value [6]. A child node
j is selected to maximize

UCT = vs′ + Cp

√
2 lnns
ns′

(1)

Where vs′ is the value of child s′ as calculated by the backup
function, ns and ns′ are the number of times nodes s and
child s′ have been visited and Cp > 0 is a constant that shifts
priority from exploration to exploitation.

The traditional expansion strategy is to explore each action
at least once in each node. After all actions have been ex-
panded, the node applies the selection strategy. Some variants
of MCTS reduce the branching factor of the tree by only
expanding the nodes selected by a special expansion strategy.
A specific example is the crazy stone algorithm [7], which
is an expansion strategy that was originally designed for Go.
We will use an adaptation of this strategy in the algorithm
proposed in Section V. When using crazy stone, an action i
is selected with a probability proportional to ui

ui = exp

(
K

µ0 − µi√
2 (σ2

0 + σ2
i )

)
+ εi (2)

Each action has an estimated value µi ordered in such a way
that µ0 > µ1 > · · · > µN , and a variance σ2

i . K is a constant
that influences the exploration — exploitation trade off. εi
prevents the probability of selecting a move to reach zero. Its
value is proportional to the ordering of the expected values of
the possible actions: εi = 0.1+2−i+ai

N . Here, ai is 1 when an
action is an atari move, a go-specific move that can otherwise
easily be underestimated by MCTS, and otherwise 0.

After a rollout, the reward is backed up, which means that
the estimated value for every node that has been visited in this
iteration is updated with the reward of this simulation.

C. Options

In order to mimic human game playing strategies, such as
defining subgoals and subtasks, we use options. Options, or
macro-actions, have been proposed by Sutton et al. [2] as a
method to incorporate temporal abstraction in reinforcement
learning. The majority of the research seems to focus on
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learning algorithms, little work has been done on combining
options with tree search methods [8], although most learning
algorithms are time and memory heavy and tree search meth-
ods have shown more promising results on complex games.

An option is a predefined method of reaching a specific
subgoal. Formally, it is a triple 〈I, π, β〉 in which I ⊆ S is an
initiation set, π : S×A→ [0, 1] is a policy and β : S+ → [0, 1]
is a termination condition.

When an agent starts in state s, it can choose from all of
the options o ∈ O that have s in its initiation set Io. Then the
option’s policy π is followed, possibly for several time steps.
The agent stops following the policy as soon as it reaches a
state that satisfies a termination condition in β. This means
that the option has reached its subgoal, or a criterion is met
that renders the option obsolete (e.g., its goal does not exist
anymore). Afterwards, the agent chooses a new option.

A popular algorithm that uses options instead of actions is
SMDP Q-learning [2]. In general, it estimates the expected
rewards for using an option in a certain state, in order to find
an optimal policy over the option set.

D. General Video Game Playing

We use the general video game playing problem as a
benchmark for our algorithms. Recent developments in this
area include VGDL [9], a framework in which a large number
of games can be defined and accessed in a similar manner.
Using VGDL, algorithms can access all the games similarly,
resulting in a method to compare their performances on several
games.

The GVGAI competition provides games written in VGDL.
The games function as a black box from which algorithms can
only observe the game state. In each game tick, algorithms
have limited time to plan their action, during which they
can access a forward model, which simulates new states and
rewards for actions. The actions that are used on the forward
model do not influence the real game score. Algorithms should
return actions before their simulation time runs out.

The algorithms proposed in this paper will be benchmarked
on the GVGAI game sets, using the rules of that competition.
This means that the algorithms do not have any access to the
game and level descriptions. When an algorithms starts playing
a game, it typically knows nothing of the game except for the
observations described above.

III. RELATED WORK

This section covers some popular alternative methods for
general video game playing and prior work on tree search
with options.

Deep Q networks (DQN) [10] is a general video game
playing algorithm that trains a convolutional neural network
that has the last four pixel frames of a game as input and
tries to predict the return of each action. A good policy
can then be created by selecting the action with the highest
return. In this case it was not desirable to implement DQN
because of the limitations proposed by our testing framework.
The GVGAI competition framework currently works best for

planning algorithms that use the forward model to quickly
find good policies. Learning over the course of several games
is difficult. In contrast, DQN typically trains on one game for
several days before a good policy is found and does not utilize
the forward model, but always applies actions directly to the
game in order to learn.

Another alternative is the algorithm Planning under uncer-
tainty with Macro-Actions (PUMA), which applies forward
search to options and works on Partially Observable MDPs
(POMDPs) [11]. PUMA automatically generates goal-oriented
MDPs for specific subgoals, the advantage of which is that
effective options can be created without requiring any prior
knowledge of the POMDP. The disadvantage is that this
takes a lot of computation time and thus would not work
in the GVGAI framework, where only 40 milliseconds of
computation time is allowed between actions. Furthermore
PUMA has to find out the optimal length per macro-action,
our algorithm can use options of variable length with starting
an stopping conditions.

Another algorithm that uses MCTS with macro-actions is
called Purofvio. Purofvio plans over simple macro-actions
which are defined as repeating one action several times [12].
No more complex options are defined. All the options are
of exactly the same size. Purofvio is created solely for the
physical travelling salesperson problem. Although Purofvio
could also work on other games, we decided to create a
different algorithm, that is capable of using more complex
options.

IV. O-MCTS

We propose O-MCTS, a novel algorithm that simulates
the use of subgoals by planning over options using MCTS,
enabling the otherwise infeasible use of options in complex
MDPs. The resulting algorithm achieves higher scores than
MCTS on complex games that have several subgoals. It works
as follows: like in MCTS, a tree of states is built by simulating
game plays. The algorithm chooses options instead of actions.
When an option is chosen, each next node in the search tree
represents an action chosen by that option. The search tree can
only branch if an option is finished, i.e., its subgoal is reached.
Since traditional MCTS branches on each action, whereas O-
MCTS only branches when an option is finished, deeper search
trees can be built in the same amount of time. This section
describes how the process works in more detail.

The tree representation of an O-MCTS tree is the same as
in MCTS: a node represents a state, a connection represents an
action. An option spans several actions and therefore several
nodes in the search tree, as shown in Figure 2. We introduce a
change in the expansion and selection strategies, which select
options rather than actions. When a node has an unfinished
option, the next node will be created using an action selected
by that option. When a node contains a finished option (the
current state satisfies its termination condition β), a new option
can be chosen by the expansion or selection strategy. The
search tree can only branch when an option is finished.
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Fig. 2. The search tree constructed by O-MCTS. In each blue box, one
option is followed. The arrows represent actions chosen by the option. An
arrow leading to a blue box is an action chosen by the option represented by
that box.

Algorithm 1 O−MCTS(O, r, t, d)

1: Cs∈S ← ∅ . cs is the set of children nodes of s
2: o← ∅ . os will hold the option followed in s
3: while time taken < t do
4: s← r . start from root node
5: while ¬stop(s, d) do
6: if s ∈ β(os) then . if option stops in state s
7: ps ← ∪o(s ∈ Io∈O) . ps = available options
8: else
9: ps ← {os} . continue with current option

10: end if
11: m← ∪o(os∈cs) . set m to expanded options
12: if ps = m then . if all options are expanded
13: s′ ← maxc∈cs

uct(s, c) . Eq. 1
14: s← s′ . continue loop with child
15: else
16: ω ← random element(ps −m)
17: a← get action(ω, s)
18: s′ ← expand(s, a) . create child s′ using a
19: cs ← cs ∪ {s′} . add to set of children
20: os′ ← ω
21: break
22: end if
23: end while
24: δ ← rollout(s′) . simulate until stop
25: back up(s′, δ) . save reward to parent nodes (Eq. 3)
26: end while
27: return get action(maxo∈cr

value(o), r)

We describe O-MCTS in Algorithm 1. It is invoked with
a set of options O, a root node r, a maximum runtime t
in milliseconds and a maximum search depth d. The set of
options used for our experiments is described in Section VI.
Two variables are instantiated. Cs is a set of sets, containing
the set of child nodes for each node. The set o contains which
option is followed for each node. The main loop starts at line 3,
which keeps the algorithm running until time runs out. The
inner loop runs until a node s is reached that meets a stop
criterion defined by the function stop, or a node is expanded
into a new node. In lines 6 until 10, ps is set to all options that
are available in s. If an option has not finished, ps contains

only the current option. Otherwise, it contains all the options
o that have state s in their initiation set Io. For example, the
agent is playing zelda and the current state s shows no NPCs
on screen. If o is an option for avoiding NPCs, Io will not
contain state s, because there are no NPCs on screen, rendering
o useless in state s. ps will thus not contain option o.

O-MCTS consists of the same four phases as MCTS. In
line 11, m is set to the set of options chosen in the children of
state s. If ps is the same set as m, i.e., all possible options have
been explored at least once in node s, a new node s′ is selected
by UCT. In line 14, s is instantiated with the new node s′,
continuing the inner loop using this node. Else, some options
are apparently unexplored in node s. It is expanded with a
random, currently unexplored option by lines 15 to 22. After
expansion or when the stop criterion is met, the inner loop
is stopped and a rollout is done, resulting in score difference
δ. This score difference is backed up to the parent nodes of
s using the backup function, after which the tree traversal
restarts with the root node r.

A number of functions is used by Algorithm 1. The function
stop returns true when either the game ends in state s or
the maximum depth is reached in s. The function get action
lets option ω choose the best action for the state in node s,
The function expand creates a new child node s′ for node
s. s′ contains the state that is reached when action a is
applied to the state in node s. Typically, the rollout function
chooses random actions until stop returns true, after which
the difference in score achieved by the rollout is returned. In
O-MCTS however, rollout always applies actions chosen by
option o first and applies random actions after o is finished.
The back up function traverses the tree through all parents
of s, updating their expected value. In contrast to traditional
MCTS, which backs up the mean value of the reward to all
parent nodes, a discounted value is backed up. The backup
function for updating the value of ancestor node s when a
reward is reached in node s′ looks like this:

vs ← vs + δγds′−ds , (3)

where δ is the reward that is being backed up, vs is the value
of node s. ds and ds′ are the node depths of tree nodes s and
s′. Thus, a node that is a further ancestor of node s′ will be
updated with a smaller value.

When the time limit is reached, the algorithm chooses an
option from the children of the root node, cr, corresponding to
the child node with the highest expected value. Subsequently,
the algorithm returns the action that is selected by this option
for the state in the root node. This action is applied to the
game. In the next state, the algorithm restarts by creating a
new root node from this state.

We expect that since this implementation of MCTS with
options reduces the branching factor of the tree, the algorithm
can do a deeper tree search. This is illustrated in Figure 2,
where the tree can not branch inside blue boxes. Furthermore,
we expect that the algorithm will be able to identify and meet
a game’s subgoals by using options. In the experiments section
we show results that support our expectations.
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V. OL-MCTS: LEARNING OPTION VALUES

Although we expect O-MCTS to be an improvement over
MCTS, we also expect the branching factor of O-MCTS’s
search tree to increase as the number of options increases.
When many options are defined, exploring all the options
becomes infeasible. In this section, we will define option
values: the expected mean and variance of an option.We adjust
O-MCTS to learn the option values and focus more on the
options with higher option values. Especially when a level is
played several times, we expect this to be advantageous. We
call the new algorithm Option Learning MCTS (OL-MCTS).
We expect that OL-MCTS can create deeper search trees
than O-MCTS in the same amount of time, which results
in more accurate node values and an increased performance.
Furthermore, we expect that this effect is the greatest in games
where the set of possible options is large, or where only a small
subset of the option set is needed in order to win.

In general, OL-MCTS saves the return of each option after
it is finished, which is then used to calculate global option
values. During the expansion phase of OL-MCTS, options
that have a higher mean or variance in return are prioritized.
Contrary to O-MCTS not all options are expanded, but only
those with a high variance or mean return. The information
learned in a game can be transferred if the same game is played
again by supplying OL-MCTS with the option values of the
previous game.

The algorithm learns the option values, µ and σ. The
expected mean return of an option o is denoted by µo. This
state-independent number represents the returns that were
achieved in the past by an option for a game. Similarly, the
variance of all the returns of an option o is saved to σo.

For the purpose of generalisation, we divide the set of
options into types and subtypes. The option for going to a
movable sprite has type GoToMovableOption. An instance
of this option exists for each movable sprite in the game.
A subtype is made for each sprite type (i.e., each different
looking sprite). The option values are saved and calculated
per subtype. Each time an option o is finished, its subtype’s
values µo and σo are updated by respectively taking the mean
and variance of all the returns of this subtype. This enables
the algorithm to generalize over subtypes.

Using option values, we can incorporate the progressive
widening algorithm from Equation 2, crazy stone, to shift
the focus of exploration to promising regions of the tree. The
crazy stone algorithm is applied in the expansion phase of OL-
MCTS. As a result, not all children of a node will be expanded,
but only the ones selected based on crazy stone. When using
crazy stone, we can select the same option several times, this
enables deeper exploration of promising subtrees, even during
the expansion phase. After a predefined number of visits v to
a node, the selection strategy UCT is followed in that node to
tweak the option selection. When it starts using UCT, no new
expansions will be done in this node.

The new algorithm (Algorithm 2) has two major modifica-
tions. The updates of the option values are done in line 7.

Algorithm 2 OL−MCTS(O, r, t, d, v, µ, σ)

1: Cs∈S ← ∅
2: o← ∅
3: while time taken < t do
4: s← r
5: while ¬stop(s, d) do
6: if s ∈ β(os) then
7: update values(s, os, µ, σ) . update µ and σ
8: ps ← ∪o(s ∈ Io∈O)
9: else

10: ps ← {os}
11: end if
12: m← ∪o(os∈cs)
13: if ns < v then . if state is visited < v times
14: us ← crazy stone(µ, σ,ps) . Eq. 2
15: ω ← weighted random(us,ps)
16: if ω 6∈m then . option ω not expanded
17: a← get action(ω, s)
18: s′ ← expand(s, a)
19: cs ← cs ∪ {s′}
20: os′ ← ω
21: break
22: else . option ω already expanded
23: s′ ← s ∈ cs : os = ω . child that uses ω
24: end if
25: else . apply UCT
26: s′ ← uct(s)
27: end if
28: s← s′

29: end while
30: δ ← rollout(s′)
31: back up(s′, δ)
32: end while
33: return get action(maxo∈cr

value(o), r)

The function update values takes the return of the option o
and updates its mean µo and variance σo by calculating the
new mean and variance of all returns of that option subtype.
The second modification starts on line 13, where the algorithm
applies crazy stone if the current node has been visited less
than v times. If the node is visited more than v times, it applies
UCT similarly to O-MCTS. The crazy stone function returns a
set of weights over the set of possible options ps. A weighted
random then chooses a new option ω by using these weights.
If ω has not been explored yet, i.e., there is no child node of s
in cs that uses this option, the algorithm chooses and applies
an action and breaks to rollout in lines 17 to 27. This is similar
to the expansion steps in O-MCTS. If ω has been explored in
this node before the corresponding child node s′ is selected
from cs and the loop continues like when UCT selects a child.

We expect that by learning option values and applying crazy
stone, the algorithm can create deeper search trees than O-
MCTS. These trees are focused more on promising areas of the
search space, resulting in improved performance. Furthermore,
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we expect that by transferring option values to the next game,
the algorithm can improve after replaying games.

VI. EXPERIMENTS

In this section we describe our experiments on O-MCTS
and OL-MCTS. The algorithms are compared to the MCTS
algorithm, as described in Section II-B. All algorithms are
run on a set of twenty-eight different games in the VGDL
framework. The set consists of all the games from the first
four training sets of the GVGAI competition, excluding puzzle
games that can be solved by an exhaustive search and have no
random component (e.g. NPCs). Each game has five levels.

Firstly, we compare O-MCTS to MCTS by showing the
win ratio and mean score of both algorithms on all the games.
Secondly we show the improvement that OL-MCTS makes
compared to O-MCTS when it is allowed 4 games of learning
time. Lastly we compare the three algorithms by summing up
all the victories of all the levels of each game.

For these experiments we construct an option set which is
aimed at providing action sequences for any type of game,
since the aim here is general video game playing. Note that
since the option set is a variable of the algorithm, either a
more specific or automatically generated set of options can be
used by the algorithm as well.

The set of option types consists of one option that executes a
specific action once, an option that avoids the nearest NPC by
moving away from it, an option that moves to a movable sprite
until it is close to it (but not on it). There are options that go to
a movable sprite and options to go to a certain position in the
game. Lastly we create an option that waits until an NPC is
at a certain distance and then fires the weapon. The specifics
about the option set can be found in the original thesis [13].

For each option type, a subtype per visible sprite type is
created during the game. For each sprite, an option instance
of its corresponding subtype is created. For example, the
game zelda contains three different sprite types (excluding the
avatar and walls); monsters, a key and a portal. The first level
contains three monsters, one key and one portal. The aim of the
game is to collect the key and walk towards the portal without
being killed by the monsters. The score is increased by 1 if a
monster is killed, i.e., its sprite is on the same location as the
sword sprite, if the key is picked up, or when the game is won.
go to movable and go near movable options are created for
each of the three monsters and for the key. A go to position
option is created for the portal. One go to nearest sprite of type
option is created per sprite type. One wait and shoot option is
created for the monsters and one avoid nearest NPC option is
created. This set of options is O, as defined in Section II-C.
In a state where, for example, all the monsters are dead, the
possible option set ps does not contain the avoid nearest NPC,
go to movable and go near movable options for the monsters.

The go to . . . and go near . . . options utilize an adaptation
of the A∗ algorithm to plan their routes [14]. An adaptation
is needed, because at the beginning of the game there is no
knowledge of which sprites are traversable by the avatar and
which are not. Therefore, during every move that is simulated

by the agent, the A∗ module has to update its beliefs about
the location of walls and other blocking objects. This is
accomplished by comparing the movement the avatar wanted
to make to the movement that was actually made in game.
If the avatar did not move, it is assumed that all the sprites
on the location the avatar should have arrived in are blocking
sprites. Our A∗ keeps a wall score for each sprite type. When
a sprite blocks the avatar, its wall score is increased by one.
Additionally, to prevent the avatar from walking into deadly
sprites, when a sprite kills the avatar, its wall score is increased
by 100. Traditionally the A∗’s heuristic uses the distance
between two points. Our A∗ adaptation adds the wall score of
the goal location to this heuristic, encouraging the algorithm to
take paths with a low wall score. This method enables A∗ to try
to traverse paths that were unavailable earlier, while preferring
safe and easily traversable paths. For example in zelda, a door
is closed until a key is picked up. Our A∗ implementation
will still be able to plan a path to the door once the key is
picked up, to win the game. Note that because the games can
be stochastic, A∗ has to be recalculated for each simulation.

We empirically optimize the parameters of the algorithms
for the experiments. We use discount factor γ = 0.9, maximum
action time t = 40 milliseconds. The maximum search depth
d is set to 70, which is higher than most alternative tree search
algorithms, for example in the GVGAI competition, use.
This is possible because the search tree has a relatively low
branching factor. The number of node visits after which uct
is used, v, is set to 40. Crazy stone parameter K is set to 0.5.
For comparison, we use the MCTS algorithm provided with
the Java implementation of VGDL which employs a maximum
tree depth of 10, because the branching factor is higher.
Both algorithms have uct constant Cp =

√
2. Unfortunately,

comparing to Q-learning with options was impossible, because
the state space of these games is too big for the algorithm to
learn any reasonable behavior. All the experiments are run
on an Intel i7–2600, 3.40GHz quad core processor with 6
GB of DDR3, 1333 MHz RAM memory. In all the following
experiments on this game set, each algorithm plays each of
the 5 levels of every game 20 times.

First, we will describe the results of the O-MCTS algorithm
in comparison with MCTS. This demonstrates the improve-
ment that can be achieved by using our algorithm. The games
in this and the following experiments are ordered from left to
right by the performance of an algorithm that always chooses
a random action, indicating the complexity of the games.
Figure 3 shows the win ratio and normalized score of the
algorithms for each game. In short, the O-MCTS algorithms
performs at least as good as MCTS in almost all games, and
better in more than half.

O-MCTS outperforms MCTS in the games missile com-
mand, bait, camel race, survive zombies, firestorms, lemmings,
firecaster, overload, zelda, chase, boulderchase and eggoma-
nia winning more games or achieving a higher mean score.
By looking at the algorithm’s actions for these games, we can
see that O-MCTS succeeds in efficiently planning paths in a
dangerous environment, enabling it to do a further forward
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Fig. 3. Win ratio and mean normalized score of the algorithms per game. O-MCTS outperforms MCTS.

search than MCTS. Camel race requires the player to move
to the right for 80 consecutive turns to reach the finish line.
No intermediate rewards are given to indicate that the agent is
walking in the right direction. This is hard for MCTS, since it
only looks 10 turns ahead. O-MCTS always wins this game,
since it can plan forward a lot further. Furthermore, the rollouts
of the option for walking towards the finish line have a bigger
chance of reaching the finish line than the random rollouts
executed by MCTS. In zelda we can see that the MCTS
algorithm achieves roughly the same score as O-MCTS, but
does not win the game, since picking up the key and walking
towards the door is a difficult action sequence. We assume
that the mean score achieved by MCTS is because it succeeds
in killing the monsters, whereas O-MCTS achieves its score
by picking up the key and walking to the door. These results
indicate that O-MCTS performs better than MCTS in games
where a sequence subgoals have to be reached.

The MCTS algorithm performs better than O-MCTS in
pacman, whackamole, jaws, seaquest and plaque attack (note
that for seaquest, O-MCTS has a higher mean score, but wins
less than MCTS). A parallel between these games is that
they have a big number of sprites, for each of which several
options have to be created by O-MCTS. When the number
of options becomes too big, constructing the set of possible
options ps for every state s becomes so time-consuming that
the algorithm has too little time to build a tree and find the
best possible action. To test this hypothesis we ran the same
test with an increased computation time of 120ms and found
that the win ratio of O-MCTS increases to around 0.8 for
seaquest and plaque attack, whereas the win ratio for MCTS
increased to 0.9 and 0.7 respectively. This means that with
more action time, the difference between O-MCTS and MCTS
is reduced for seaquest and O-MCTS outperforms MCTS on
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Fig. 4. Normalized win ratio and score comparison of OL-MCTS and O-
MCTS. OL-MCTS outperforms O-MCTS by a small margin in some games.
In the games that are not shown both algorithms perform equally.

plaque attack.
Secondly, we compare OL-MCTS to O-MCTS by running

it on the same set of games. The option learning algorithm is
allowed four learning games, after which the fifth is used for
the comparisons. Figure 4 shows the performance difference
between O-MCTS and OL-MCTS on some games. For the
other games, the performance was approximately the same.
Here OL-MCTS1 shows the performance of OL-MCTS on
the first game. OL-MCTS5 shows the performance of the
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Fig. 5. Learning improvement on game bait, it shows win ratio and
normalized score. Total number of wins of the algorithms on all games.

algorithm after learning for four games.
We can see that, although the first iteration of OL-MCTS

sometimes performs a bit worse than O-MCTS, the fifth
iteration often scores at least as high, or higher than O-MCTS.
We expect that the loss of performance in OL-MCTS1 is a
result of the extra overhead that is added by the crazy stone
algorithm: a sorting of all the option values has to take place in
each tree node. The learning algorithm significantly improves
score and win ratio for the game bait. Figure 5(a) shows the
improvement in score and win ratio for this game. There are
two likely explanations for this improvement: 1. There are
sprites that kill the player, which the algorithm learns to avoid
2. The algorithm learns that it should pick up the key.

Furthermore, we can see small improvements on the games
seaquest, plaque attack and jaws, on which O-MCTS performs
worse than MCTS. Although OL-MCTS does not exceed the
score of the MCTS algorithm, this improvement suggests that
OL-MCTS is on the right path of improving O-MCTS.

A. Results

Summarizing, our tests indicate that on complex games O-
MCTS outperforms MCTS. For other games it performs at
least as well, as long as the number of game sprites is not too
high. The OL-MCTS algorithm can increase performance for
some of the games, such as bait and plaque attack. On other
games, little to no increased performance can be found.

An overview of the results is depicted in Figure 5(b), which
shows the sum of wins over all games, all levels. It shows
a significant (p < 0.05) improvement of O-MCTS and OL-
MCTS over MCTS. There is no significant difference between
performance of OL-MCTS over O-MCTS, although our results
suggest that it does improve for a subset of the games.

VII. CONCLUSIONS AND FUTURE WORK

From the experimental results we may conclude that the O-
MCTS algorithm almost always performs at least as well as
MCTS. It excels in games with both a small level grid or a
small amount of sprites and high complexity, such as zelda,
overload and eggomania. Furthermore, O-MCTS can look
further ahead than most tree searching alternatives, resulting
in a high performance on games like camel race, in which
reinforcement is sparse. An inherent advantage of having deep

search trees is that the probability of an promising option
not finishing reduces. We confirm our hypothesis that by
using options O-MCTS can win more games than MCTS. The
algorithm performs worse than expected in games with a high
amount of sprites, since the size of the option set becomes so
large that maintaining it takes a lot of time, leaving too little
time for tree building. Over all twenty-eight games, O-MCTS
wins more games than MCTS.

The results of OL-MCTS indicate that it is possible to learn
about which options work better, meaning that in the future
it should be possible to completely remove infeasible options
that have low expected rewards from the option set. We expect
that this could reduce the computation time O-MCTS needs
to construct and check all the options. However, the algorithm
can be further improved.

Furthermore, more research should be done in the influence
of the option set. The A∗ algorithm could be replaced by a
simpler algorithm, such as Enforced Hill Climbing [15]. The
learning algorithm could be improved by calculating the option
values differently. An alternative method can use discounting
in order to prioritize more recent observations.
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