
Autonomous Agents 2: Multi-objective decision problems

Autonomous Agents 2: Multi-objective decision
problems

Diederik Roijers
Informatics Institute

University of Amsterdam

April 30, 2015

Autonomous Agents 2: Multi-objective decision problems

Contents

Why Multi-Objective?

MOMDPs

Motivating Scenarios

Taxonomy

Methods

Optimistic linear support

Autonomous Agents 2: Multi-objective decision problems

A simple problem...

Let’s say you have a wart on your finger

Virus, painful, contagious, can in very rare cases lead to skin
cancer

Two treatments:

97.00% probability of being cured
99.99% probability of being cured

Picture by Steven Fruitsmaak, from http://nl.wikipedia.org/wiki/Bestand:Wart_ASA_animated.gif

http://nl.wikipedia.org/wiki/Bestand:Wart_ASA_animated.gif

Autonomous Agents 2: Multi-objective decision problems

A slightly more complex problem...

The Dutch government has been attempting to decrease traffic
jams in the Randstad, for a number of decades now. Any solution
should balance:

Percentage of traffic jams decreased

...

Autonomous Agents 2: Multi-objective decision problems

Why Multi-Objective?

Real-world problems just are
Multi-Objective

And AI can help.
Today: MOMDPs and Multi-agent problems

Autonomous Agents 2: Multi-objective decision problems

From MDPs ...

A finite single-objective Markov decision process (MDP) is a tuple
〈S ,A,T ,R, µ, γ〉 where:

S is a finite set of states,

A is a finite set of actions,

T : S × A× S → [0, 1] is a transition function specifying, for
each state, action, and next state, the probability of that next
state occurring,

R : S × A× S → < is a reward function, specifying, for each
state, action, and next state, the expected immediate reward,

µ : S → [0, 1] is a probability distribution over initial states,
and

γ ∈ [0, 1) is a discount factor specifying the relative
importance of immediate rewards.

Autonomous Agents 2: Multi-objective decision problems

... to MOMDPs

A finite single-objective multi-objective Markov decision process
(MOMDP), with n objectives, is a tuple 〈S ,A,T ,R, µ, γ〉 where:

S ,A,T , µ and γ are the same as in an MDP, but

R : S × A× S → <n is a reward function, specifying, for each
state, action, and next state, the expected immediate
vector-valued reward.

Autonomous Agents 2: Multi-objective decision problems

MOMDP equations

MOMDP

Rt =
∞∑

k=0

γkrt+k+1

Vπ(s) = E [Rt | π, st = s]

Vπ(s) =
∑

a

π(s, a)
∑

s′

T (s, a, s ′)[R(s, a, s ′) + γVπ(s ′)]

Additive vector valued returns.

Autonomous Agents 2: Multi-objective decision problems

But wait...

Can’t we just scalarize the decision problem?

Find a function f that translates the multiple objectives to a
scalar utility: a scalarization function

V π
w = f (Vπ,w)

Use the scalarization function to define an equivalent
single-objective problem

Solve that problem, and we’re done
(http://incompleteideas.net/rlai.cs.ualberta.ca/
RLAI/rewardhypothesis.html)

... right?

http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html
http://incompleteideas.net/rlai.cs.ualberta.ca/RLAI/rewardhypothesis.html

Autonomous Agents 2: Multi-objective decision problems

Scenarios

We identified 3 scenarios in which scalarization before
planning or learning is:

Impossible
Undesirable
Infeasable

These scenarios are called:

(a) unknown weights
(b) decision support
(c) known weights

Autonomous Agents 2: Multi-objective decision problems

The unknown weights scenario

We know the scalarization function, but not the weights w,
for an MOMDP.

Planning (or learning), is expensive, but we have quite a bit of
time before we need to act.

When the weights come in however, we want to act
immediate.

Furthermore, the weights may change quickly.

Example: resources and costs of varying prices on the market
and mining company trying to obtain resources.

Autonomous Agents 2: Multi-objective decision problems

Decision support scenario

We know the MOMDP (or might have a simulator), but it is
hard to construct a plan for it.

Furthermore, the trade-offs between the objectives are hard.

The people who have to determine the weigths, e.g. a
committee at a local government, want to be presented with
all the alternatives first.

Example: Changing the traffic situation of a city to improve
the flow of traffic, while minimizing noise levels and pollution.

Autonomous Agents 2: Multi-objective decision problems

Multiple policies

The unknown weights and decision support scenarios, require
a solution for all possible scalarizations.

They require multiple policies to be computed.

Autonomous Agents 2: Multi-objective decision problems

Known weights scenario

We know the MOMDP (or might have a simulator), and know
the scalarization function, and weights, but still cannot
scalarize.

The form of the scalarization function is complex.

If we try to scalarize the problem before planning or learning,
this can lead to undesirably complex scalar valued problems.

The known weights scenario is a single-policy scenario, but
does require special methods.

Autonomous Agents 2: Multi-objective decision problems

Scenarios

algorithmMOMDP solution
set

scalarization

weights

algorithm solution
set

user
selection

single
solution

planning or learning phase

execution phase

algorithm
MOMDP

+
weights

(a)

(b)

(c)

MOMDP

single
solution

execution phaseselection phase

single
solution

execution phase

selection phaseplanning or learning phase

planning or learning phase

Autonomous Agents 2: Multi-objective decision problems

Contents

Why Multi-Objective?

MOMDPs

Motivating Scenarios

Taxonomy

Methods

Optimistic linear support

Autonomous Agents 2: Multi-objective decision problems

Taxonomy

So, let’s solve some MOMDPs

We have seen that:

V π
w = f (Vπ,w)

Solving for all possible scalarizations gives us the undominated
set:

U = {π : ∃w∀π′ V π
w ≥ V π′

w }

But what is the scalarization function?

What type of policies do we require/allow?

Autonomous Agents 2: Multi-objective decision problems

Taxonomy

So, let’s solve some MOMDPs

We have seen that:

V π
w = f (Vπ,w)

Solving for all possible scalarizations gives us the undominated
set:

U = {π : ∃w∀π′ V π
w ≥ V π′

w }

But what is the scalarization function?
→ a property of the problem!

What type of policies do we require/allow?
→ a property of the problem!

Autonomous Agents 2: Multi-objective decision problems

MOMDP Taxonomy

type of scalarization function (linear, monotonically increasing)

stochastic policies versus deterministic policies

single policy versus multiple policies

Autonomous Agents 2: Multi-objective decision problems

Scalarization functions

Linear scalarization function:

V π
w = f (Vπ,w) = w · Vπ

Some function that is monotonically increasing in all objectives

Autonomous Agents 2: Multi-objective decision problems

The linear scalarization function

Linear scalarization function:

V π
w = f (Vπ,w) = w · Vπ

Common, e.g. prices of different resources

What happens if we the scalarization function is linear and we
know the weights?

Autonomous Agents 2: Multi-objective decision problems

The linear scalarization function

Linear scalarization function:

V π
w = f (Vπ,w) = w · Vπ

Common, e.g. prices of different resources

Known weights scenario → trivial (single objective MDP
translation)

Undominated set → Convex Hull

CH = {π : ∃w∀π′ w · Vπ ≥ w · Vπ′}

Autonomous Agents 2: Multi-objective decision problems

The linear scalarization function

We need only to consider stationary deterministic policies.

Why?

Autonomous Agents 2: Multi-objective decision problems

The linear scalarization function

We need only to consider stationary deterministic policies.

Why? Hint:

For single objective MDPs we know that there always is an
optimal policy (one with the maximum possible value), that is
deterministic and stationary...
...

Autonomous Agents 2: Multi-objective decision problems

The linear scalarization function

We need only to consider stationary deterministic policies.

Why?

For single objective MDPs we know that there always is an
optimal policy (one with the maximum possible value), that is
deterministic and stationary.
For each possible weight vector w, an MOMDP with a linear
scalarization problem can be translated to an equivalent MDP
Ergo, for all possible weight vectors, there is an optimal policy
that is deterministic and stationary.

Autonomous Agents 2: Multi-objective decision problems

Exercise

Three armed bandit (single state), with deterministic direct (2
dimensional) rewards:

a1 → (3, 0)

a2 → (1, 1)

a3 → (0, 3)

γ = 3/4

Find the Convex Hull

CH = {π : ∃w∀π′ w · Vπ ≥ w · Vπ′}

What are the (2D) Value(s/ vectors)?

Autonomous Agents 2: Multi-objective decision problems

Convex upper surface

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
12

w[0]

V
w

Autonomous Agents 2: Multi-objective decision problems

Summary Linear Scalarizations

Single policy

One stationary deterministic policy

Multiple policies

Convex Hull of stationary deterministic policies

Autonomous Agents 2: Multi-objective decision problems

Monotonically increasing scalarization functions

What if all we can assume about the scalarization function is
that is monotonically increasing in all objectives?

If we keep the values for all objectives but one the same, and
increase the value of the other one, the scalarized value cannot
go down.

A Pareto-dominated policy is always worse than a
non-dominated policy:

Vπ �P Vπ′ ⇔ ∀i ,V π
i ≥ V π′

i ∧ ∃i ,V π
i > V π′

i

Scalarized(!) returns can become non-additive: e.g. if
f (Vπ,w) = w

∏
i max(0,V π

i) then,

f (Vπ,w) 6= E [
∞∑

k=0

γk (f (rt+k+1),w)].

Autonomous Agents 2: Multi-objective decision problems

Exercise revisited

Three armed bandit (single state), with deterministic direct (2
dimensional) rewards:

a1 → (3, 0)

a2 → (1, 1)

a3 → (0, 3)

γ = 3/4

The scalarization function is: f (Vπ,w) = w
∏

i max(0,V π
i) if

all , where w is a positive constant.

What is the optimal policy?

Autonomous Agents 2: Multi-objective decision problems

Exercise revisited

Three armed bandit (single state), with deterministic direct (2
dimensional) rewards:

a1 → (3, 0)

a2 → (1, 1)

a3 → (0, 3)

γ = 3/4

The scalarization function is: f (Vπ,w) = w
∏

i max(0,V π
i),

where w is a constant.

What is the optimal policy?

Stochastic policy?
If we allow only deterministic policies, can we suffice with
stationary policies?

Autonomous Agents 2: Multi-objective decision problems

Monotonically increasing scalarization functions

If we do not allow stochastic policies,

E.g. in medical decisions it is not exceptable to take actions
stochastically
It is not acceptable to treat patients stochastically and look
only at the expected (read average) returns.

We may have to resort to non-stationary policies, i.e. policies
that condition their actions on time.

This does not occur in single objective MDPs!

We need the Pareto-front of deterministic non-stationary
policies:

PF = {π : ¬∃π′,Vπ′ �P Vπ}.

Autonomous Agents 2: Multi-objective decision problems

Pareto front vs. convex hull

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

V[0]

V
[1
]

B
A

C

Autonomous Agents 2: Multi-objective decision problems

Monotonically increasing scalarization functions

If we do allow stochastic policies,

There is a nice trick to combine 2 or more stationary
deterministic Convex Hull policies, to the optimal undominated
policies:
Consider a mixture policy: stochastically select one of the
deterministic policies to follow.
e.g. a mixture policy πm, of a policy π1 with value (3, 0), and
another policy π2 with value (0, 3), will yeild the following
value:

Vπm = p1V
π1 + (1− p1)Vπ2 =

(
3p1

1− γ
,

3(1− p1)

1− γ

)
depending on the value of p1.

Autonomous Agents 2: Multi-objective decision problems

Values of mixture policies?

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

V[0]

V
[1
]

B
A

C

Autonomous Agents 2: Multi-objective decision problems

Monotonically increasing scalarization: single policy

One stochastic and/or non-stationary policy

If stochasticity is allowed: one mixture policy

Autonomous Agents 2: Multi-objective decision problems

Monotonically increasing scalarization: summary

Stochastic policies: convex hull of deterministic stationary
policies + mixture policies

Deterministic policies: Pareto front of deterministic
non-stationary policies

Autonomous Agents 2: Multi-objective decision problems

Summary

Autonomous Agents 2: Multi-objective decision problems

Methods: inner loop versus outer loop

Inner loop

Perform a series of multi-objective operations (e.g. Bellman
backups)
Typically by adapting operators of a single objective method
(e.g., value iteration)

Outer loop

Use a single objective method as a subroutine
Solve as a series of single-objective problems

Autonomous Agents 2: Multi-objective decision problems

(Inner loop) Methods

Planning Multiple policies

Convex Hull value iteration (Barret and Narayanan (2008)
CON-MOMDP (deterministic stationary Pareto Front)
(Wiering and De Jong (2007))
(hypervolume) Monte-Carlo Tree Search (PF) (Wang and
Sebag (2012))
Various LP methods

Learning

Model-based (Lizotte et al. (2010) and Lizotte et al. (2012))
Policy search (e.g. Policy gradient (SP), evolutionary methods
(PF))
TD methods (e.g. Hiraoka et al. (2009), Mukai et al. (2012))
Pareto Q-learning (Van Moffaert and Nowé (2014))
(model-based?)

Autonomous Agents 2: Multi-objective decision problems

Contents

Why Multi-Objective?

MOMDPs

Motivating Scenarios

Taxonomy

Methods

Optimistic linear support

Relation with POMDPs
Linear support
Optimistic CCS
ε-CCSs

Autonomous Agents 2: Multi-objective decision problems

Optimistic Linear Support

Outer loop for finding a CCS (lossless subset of the CH)

Generic multi-objective method

Repeatly calls a single-objective solver

Inherits quality bounds from single-objective method

Autonomous Agents 2: Multi-objective decision problems

Relation with POMDPs

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

u1

u 2

B
A

C

0.0 0.2 0.4 0.6 0.8 1.0
0

2
4

6
8

w1
u w

A

B

C

Piece-wise linear and convex scalarized value function:

V ∗CCS (w) = max
Vπ∈CCS

w · Vπ

Autonomous Agents 2: Multi-objective decision problems

Linear Support

Algorithm from POMDP literature

Can be adapted to multi-objective setting

Beliefs → weight vectors
α-vectors → value vectors

Find the CCS without enumerating all policies, by solving
scalarized instances at specific weight vectors w

Autonomous Agents 2: Multi-objective decision problems

Linear Support

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

w1

u w

A

B

C

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

w1

u w

wc

(1,8) (7,2)Δ

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

w1

u w

(1,8)
(7,2)

(5,6)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

w1

u w

Autonomous Agents 2: Multi-objective decision problems

Linear Support

Find the CCS without enumerating all policies

1 Start with an empty set of value vectors S

2 Put the extrema of the weight simplex, (0, 1) and (1, 0), on a queue
Q

3 While Q is not empty

Solve scalarized instances at every weight vector in Q
Add solutions to S
Calculate new corner weights (where the values intersect) and
add them to Q

Autonomous Agents 2: Multi-objective decision problems

Optimistic CCS

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

w1

u w

wc

(1,8) (7,2)Δ

0.0 0.2 0.4 0.6 0.8 1.0
0

2
4

6
8

w1

u w

(1,8)
(7,2)

(5,6)

Autonomous Agents 2: Multi-objective decision problems

Optimistic CCS → Optimistic Linear Support

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

w1

u w

wc

(1,8) (7,2)Δ

0.0 0.2 0.4 0.6 0.8 1.0
0

2
4

6
8

w1

u w

(1,8)
(7,2)

(5,6)

Use a priority queue with ∆ as priority.

Autonomous Agents 2: Multi-objective decision problems

ε-CCSs

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

w1

u w

wc

(1,8) (7,2)Δ

Theorem

During execution of OLS, S is an ε-CCS with ε ≤ ∆(w1), where
w1 is the corner weight with the highest priority in Q.

Autonomous Agents 2: Multi-objective decision problems

Reusing value functions found at earlier iterations

Observation: when two weights are close, the scalarized values
are probably close
Observation: if we can just check whether the value at a given
weight is still optimal, we might be done immediately
Optimistic Linear Support with Alpha Reuse (OLSAR) for
MOPOMDPs

1e
-0
4

1e
-0
1

1e
+0
2

500 1000 1500 2000 2500
runtime (ms)

ε

 RS

RAR

OLS+

OLSAR

Autonomous Agents 2: Multi-objective decision problems

OLS

OLS is a generic multi-objective method

MOMDPs
MOPOMDPs
Multi-objective coordination graphs

Can produce the CCS without enumerating all possible policies

Can produce an ε-CCS (much faster)

Works with any exact single-objective solver

Extension for approximate solver (AOLS)

Reusing value functions from earlier iterations makes OLS
much faster (OLSAR)

Autonomous Agents 2: Multi-objective decision problems

Concluding

Thank you for your attention,

If you are interested in doing a project and/or master thesis
on the subject of multi-objective decision problems, please
contact us.

Autonomous Agents 2: Multi-objective decision problems

Further reading

MOMDPs:

Diederik M. Roijers, Peter Vamplew, Shimon Whiteson, and Richard
Dazeley — A Survey of Multi-Objective Sequential Decision-Making.
Journal of Artificial Intelligence Research, 48:67-113, 2013.

OLS

Diederik M. Roijers, Shimon Whiteson, and Frans Oliehoek. —
Computing Convex Coverage Sets for Faster Multi-objective Coordination.
Journal of Artificial Intelligence Research, 52:399-443, 2015.
Diederik M. Roijers, Shimon Whiteson, and Frans Oliehoek —
Point-Based Planning for Multi-Objective POMDPs. International Joint
Conference on Artificial Intelligence (IJCAI), 2015. To Appear.

