
EFFICIENT AI
ON EMBEDDED SYSTEMS

Diederik M. Roijers

HU: Microsystems technology

VUB: AI laboratory

CO-AUTHORS

Jeff van de Kamer Maaike Hovenkamp Erik Puik

MACHINE LEARNING?

MACHINE LEARNING FOR EMBEDDED SYSTEMS!

DIABETIC FEET

Ulcers

Compliance

Daily activities

- walking

- walking stairs

SMART INSOLES

Smart insoles

- 3D-printed insole

- pressure re-distribution

- equipped with sensors

- Arduino Nano 33 BLE Sense

(Cortex-m4)

- Raspberry pi for data
gathering only

ACTIVITY RECOGNITION

Sensor data

- pressure sensors

- gyroscope

- accelerometer

Activity monitoring

- sitting (compliance)

- not worn

- standing

- walking

- walking stairs

ACTIVITY RECOGNITION

Sensor data

- pressure sensors

- gyroscope

- accelerometer

Activity monitoring

- sitting (compliance)

- not worn

- standing

- walking

- walking stairs

REQUIREMENTS

Accurate Real-time Energy-efficient

EFFICIENT FAST NEURAL NETWORK

Fewer parameters

- Smaller network

- Max pooling

Smaller parameters

- Full integer quantisation

- 3~4 times smaller

Tensorflow Lite

model = Sequential(name "Lightwegeight_model")

(strong) resolution reduction model.add(MaxPooling2D((6,1),input_shape =
inputshape)) model.add(Conv2D(3,(3,1),activation = "relu",padding =

"same",name = "conv1b")) model.add(Conv2D(3,(3,11),activation =
"relu",padding =

"same",name = "conv1"))

(light) Dropout
model.add(Dropout(0.2))

flattening and resolution reduction model.add(MaxPooling2D(2,1))
model.add(Flatten())

output layer
model.add(Dense(5,activation = "softmax",name = "Output"))

Adam optimizer (with reduced learning rate) is used, as this optimizer
has shown the greatest results in tests done previous to this one.
model.compile(optimizer = tf.keras.optimizers.Adam(0.00001),

loss='categorical_crossentropy',metrics=['accuracy’])

return model

PIPELINE
Gather data on device

Train NN on PC using data

Quantise the model (integer weights)

Compile NN model together with C++
code for microprocessor

Deploy

Classify activities

DATA FRAME

180 lines

~1.5 sec

CODE PYTHON

model = Sequential(name "Lightwegeight_model")

(strong) resolution reduction
model.add(MaxPooling2D((6,1),input_shape = inputshape))
model.add(Conv2D(3,(3,1),activation = "relu",padding = "same",name = "conv1b"))
model.add(Conv2D(3,(3,11),activation = "relu",padding = "same",name = "conv1"))

(light) Dropout
model.add(Dropout(0.2))

flattening and resolution reduction
model.add(MaxPooling2D(2,1)) model.add(Flatten())

output layer
model.add(Dense(5,activation = "softmax",name = "Output"))

Adam optimizer (with reduced learning rate) is used, as this optimizer has shown the
greatest results in tests done previous to this one.
model.compile(optimizer = tf.keras.optimizers.Adam(0.00001),

loss='categorical_crossentropy',metrics=['accuracy’])

return model

OVER TO JEFF
FOR THE DEMO

RESULTS

Accuracy: 86% (max 99.5%, but 1.5s per data frame)

Energy usage: 0.10W (23mA*4.51V; to further optimise)

Prediction speed: 50~70ms per data frame

