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Pleased to meet you

https://docs.google.com/form
s/d/e/1FAIpQLSf7jlUi681FJm
m_ZGsPhZqTpQaMdSt7grbh
FTprMsPgqV2S_A/viewform

https://docs.google.com/forms/d/e/1FAIpQLSf7jlUi681FJmm_ZGsPhZqTpQaMdSt7grbhFTprMsPgqV2S_A/viewform
https://docs.google.com/forms/d/e/1FAIpQLSf7jlUi681FJmm_ZGsPhZqTpQaMdSt7grbhFTprMsPgqV2S_A/viewform
https://docs.google.com/forms/d/e/1FAIpQLSf7jlUi681FJmm_ZGsPhZqTpQaMdSt7grbhFTprMsPgqV2S_A/viewform
https://docs.google.com/forms/d/e/1FAIpQLSf7jlUi681FJmm_ZGsPhZqTpQaMdSt7grbhFTprMsPgqV2S_A/viewform
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Hi, I'm Diederik!
• Academic Liaison for AI 

Research
Urban Innovation and 
R&D, City of Amsterdam

• Senior Researcher
AI lab, Vrije Universiteit 
Brussel

Sources: here and here@DiederikRo

https://commons.wikimedia.org/wiki/File:Amsterdam_airphoto.jpg
https://www.irasutoya.com/2018/01/ai_67.html
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Hi, I'm Roxana!
• (FWO) Postdoctoral Fellow at 

the Artificial Intelligence 
Research Group, VUB, 
Belgium

• Project: Decision-making in 
team-reward multi-objective 
multi-agent domains

http://roxanaradulescu.com@rox_teo
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Tutorial Roadmap
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Part 1 - Multi-objective decision 
making in multi-agent systems

Motivation and 
basic concepts
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Going to the conference

Two players
- rewards are public
- utility is private

MONFG

Why hard?

Taxi Tram Walking

Taxi (10€, 5min); 
(10€, 5min)

(20€, 5min); 
(2€, 15min)

(20€, 5min); 
(0€, 35min)

Tram (2€, 15min); 
(20€, 5min)

(2€, 15min); 
(2€, 15min)

(2€, 15min); 
(0€, 35min)

Walking (0€, 35min);
(20€, 5min)

(0€, 35min); 
(2€, 15min)

(0€, 35min);
(0€, 35min)
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Why?
Multiple objectives
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Because life is not simple
• What are your objectives for

your current research project?
● Publishing asap?
● Quality of conference/journal?
● Collaboration potential?
● Flag-posting?
● Increasing funding potential?
● Finishing your PhD?
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Because life really is not simple
• What are your objectives for

your current research project?
● Publishing asap?
● Quality of conference/journal?
● Collaboration potential?
● Flag-posting?
● Increasing funding potential?
● Finishing your PhD?

• How about your co-authors?
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Multiple objectives!
• Most decision problems have multiple objectives

• Cannot scalarise a priori
• Unknown, uncertain, or private utility
• Non-linear utility
• Changeable preferences/utility
• Adjustability
• Explainability for oversight and review purposes

• To scalarise is to throw away information
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More and more MO
• AI has ever increasing impact on people’s lives

• Ethical aspects more important
• Human-aligned AI is a multi-objective problem 

[Vamplew et al., 2018]

• Explainability more important
• Legal frameworks incoming

• Environmental concerns
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Policy level / paradigm shifts
• New ways of thinking are premuating the policy 

domain. 

• Amsterdam: Brede Welvaart
(Broad Wellbeing)

• Both EU and business domain:
ESG (environmental, social, 
governance)
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Example: electric vehicle charging

- meeting demands

- minimising costs

- preventing grid overloads
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Modelling and dealing w/
Multiple objectives
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User utility is central to modelling
• User utility determines what is desirable for agents

• Stems from meaningful objectives (to the user)
• Explainable
• E.g., euros, minutes 

 
• Identifying objectives 

• And then events that trigger rewards

• Decision-theoretic problem setting
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MOPOSG

Models:
On the basis of rewards (in 
objectives) and observations 
(about states).
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MOPOSG

Models:
On the basis of rewards (in 
objectives) and observations 
(about states).

But utility is not yet modelled!
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Life is still not simple
• What are your objectives for

your current research project?
● Publishing asap?
● Quality of conference/journal?
● Collaboration potential?
● Flag-posting?
● Increasing funding potential?
● Finishing your PhD?

• Setting?
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Life is still not simple at all?
• What are your objectives for

your current research project?
● Publishing asap?
● Quality of conference/journal?
● Collaboration potential?
● Flag-posting?
● Increasing funding potential?
● Finishing your PhD?

• Truly cooperative though?
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Policy-based example
• Making a city climate adaptable requires a lot of 

changes (on almost every street)
• Green management
• Water management
• Circular economy
• ...

• It also has a lot of impact besides Environmental:
• Social, disturbing people's live rhythms
• Economical, ...

• Many stakeholders (citizens, businesses, etc.), many 
neighbourhoods 
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Utility-based approach

• Utility function, ui, maps vector to scalar utility

• Total preference order (can always make a decision 
between alternatives)

• Utility determines what is optimal within available 
policies
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Utility-based approach

• Solution should be derived from utility 
• Not axiomatically assumed

• This leads to a taxonomy based on rewards and 
utilities (Part 2)
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How to deal with MO problems
• Collect available information about user utility.

• Decide which policies (e.g., stochastic vs deterministic) are allowed.

• Derive the optimal solution concept from the resulting information of the first two 
points.

• Select or design an algorithm that fits the solution concept. 

• When multiple policies are required for the solution, design a method for the user 
to select the desired policy among these optimal policies.
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Short break
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Part 2 - Structuring the MOMADM 
field

Taxonomy and 
solution concepts
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Optimisation criteria

• Vectorial reward function

• Utility-based perspective
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Optimisation criteria
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Optimisation criteria
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Optimisation criteria

• Expected Scalarised Returns (ESR)
• Calculate the expectation of the utility from the payoffs
• Utility of an individual policy execution
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Optimisation criteria

• Expected Scalarised Returns (ESR)
• Calculate the expectation of the utility from the payoffs
• Utility of an individual policy execution

• Scalarised Expected Returns (SER)
• Calculate the utility of the expected payoff
• Utility of the average payoff from several executions of the 

policy
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Optimisation criteria

• Expected Scalarised Returns (ESR)

• Scalarised Expected Returns (SER)
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Taxonomy

Rădulescu, R., Mannion, P., Roijers, D. M., & 
Nowé, A. (2020). Multi-objective multi-agent 
decision making: a utility-based analysis and 
survey. Autonomous Agents and Multi-Agent 
Systems, 34(1), 1-52.
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Taxonomy

ESR / S
ER
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Examples - Team Reward
• Team utility

• a company that aims to be 
environmentally responsible, while 
maximising profits
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Examples - Team Reward
• Team utility

• Individual utility
• Climate change policies, resource 

management
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Examples - Team Reward
• Team utility

• Individual utility

• Social Choice
• urban planning/environmental 

management/social welfare 
policies
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Examples - Individual Reward

• Social choice
• international trade 

negotiations
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Examples - Individual Reward

• Social choice
• international trade 

negotiations

• Individual utility
• participating in city 

traffic, work commutes
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Solution concepts
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Coverage sets 

• Contain at least one optimal policy 
for each possible utility function

• TRTU: rewards and derived utility is 
shared between agents, with one utility function selected during 
execution

• TRIU: agent can (contractually) agree which policy to execute
• IRIU: set of possible best responses to the behaviour of other 

agents
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Coverage sets: negotiation 

• Automated negotiation 
• Autonomous negotiating agents, representing their user’s 

interests/preferences
• Reach a compromise that satisfies all the involved parties
• Pursue equity (i.e., fairness and justice)

● Baarslag, T., Kaisers, M., Gerding, E., Jonker, C. M., 
& Gratch, J. (2017). When will negotiation agents be 
able to represent us? The challenges and 
opportunities for autonomous negotiators. 
International Joint Conferences on Artificial 
Intelligence.

● Aydoğan, R., & Jonker, C. M. (2023). A Survey of 
Decision Support Mechanisms for Negotiation. In 
Recent Advances in Agent-Based Negotiation: 
Applications and Competition Challenges (pp. 
30-51). Singapore: Springer Nature Singapore.
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Social Welfare and Mechanism Design

• System perspective: what is a socially 
desirable outcome

Design a system that forces agents to the truthful about their 
utilities and leads to optimal solution under W
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Equilibria and stability concepts

• Stable outcomes from which self-interested 
agents have no incentive to deviate

• Nash equilibria, correlated equilibria, cyclic equilibria, coalition 
formation 
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Nash Equilibrium
• No agent can improve their utility by unilaterally deviating from 

the joint strategy

• Nash equilibrium under SER:

• Nash equilibrium under ESR:



@aibrussels

Correlated Equilibrium - SO
• Introduced by Aumann, in 1974
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Correlated Equilibrium - SO
• Introduced by Aumann, in 1974
• Correlated strategy - probability vector 𝜎 on 
• External mechanism
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Correlated Equilibrium - SO
• Introduced by Aumann, in 1974
• Correlated strategy - probability vector 𝜎 on 
• External mechanism
• No agent can improve their utility by unilaterally deviating from 

the recommendation of the correlated signal
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Correlated Equilibrium - SO
• Introduced by Aumann, in 1974
• Correlated strategy - probability vector 𝜎 on 
• External mechanism
• No agent can improve their utility by unilaterally deviating from 

the recommendation of the correlated signal

• A correlated strategy 𝜎CE is a CE if:

for any strategy modification 
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Correlated Equilibrium - SO
• Correlated equilibria in real-life:
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Correlated Equilibrium 
• Correlated equilibria under SER:

• Correlated equilibria under ESR:
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Other solution concepts

• Cyclic Nash equilibria

• No agent can improve their utility by unilaterally 
deviating from a joint cyclic strategy
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Multi-Objective Normal Form Games

• Introduced by Blackwell in 1956

• MONFG - tuple (N , A, p), with n ≥ 2 and C ≥ 2 objectives, where: 
• N = {1, ..., n} – set of players
• A = A1×···×An – set of actions
• p = (p1,..., pn) – vectorial payoffs
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Example - SER

A B

A (10, 2); (10, 2) (0, 0); (0, 0)

B (0, 0); (0, 0) (2, 10); (2, 10)
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Example - Nash equilibrium

A B

A (10, 2); (10, 2) (0, 0); (0, 0)

B (0, 0); (0, 0) (2, 10); (2, 10)
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Example - Cyclic Nash equilibrium

A B

A (10, 2); (10, 2) (0, 0); (0, 0)

B (0, 0); (0, 0) (2, 10); (2, 10)
• Joint cyclic strategy

• Player 1: {A, B}
• Player 2: {A, B}
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Example - Correlated equilibrium

A B

A (10, 2); (10, 2) (0, 0); (0, 0)

B (0, 0); (0, 0) (2, 10); (2, 10)
• Correlated strategy 𝜎

• 50% (A, A)
• 50% (B, B)
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Part 3 - SOTA

Latest results and 
open challenges
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(Im)balancing Act Game

• 2 players, 2 objective
• Same payoff vector for both players

L M R

L [4,0] [3,1] [2,2]

M [3,1] [2,2] [1,3]

R [2,2] [1,3] [0,4]
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Let's play the (Im)balancing Act Game

https://docs.google.com/forms/d/e/1
FAIpQLSfHyr_yL0VsLSyOWDAXvcf
ecCAM4L2aoqbdSUh19XQocZS9D
g/viewform?vc=0&c=0&w=1&flr=0

https://docs.google.com/forms/d/e/1FAIpQLSfHyr_yL0VsLSyOWDAXvcfecCAM4L2aoqbdSUh19XQocZS9Dg/viewform?vc=0&c=0&w=1&flr=0
https://docs.google.com/forms/d/e/1FAIpQLSfHyr_yL0VsLSyOWDAXvcfecCAM4L2aoqbdSUh19XQocZS9Dg/viewform?vc=0&c=0&w=1&flr=0
https://docs.google.com/forms/d/e/1FAIpQLSfHyr_yL0VsLSyOWDAXvcfecCAM4L2aoqbdSUh19XQocZS9Dg/viewform?vc=0&c=0&w=1&flr=0
https://docs.google.com/forms/d/e/1FAIpQLSfHyr_yL0VsLSyOWDAXvcfecCAM4L2aoqbdSUh19XQocZS9Dg/viewform?vc=0&c=0&w=1&flr=0
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ESR Equilibrium
• equilibrium 1: (0.75, 0, 0.25) and (0, 1, 0) 

expected utilities: 10 and 3
• equilibrium 2: (0.25, 0, 0.75) and (0, 1, 0) 

expected utilities: 10 and 3

L M R

L [4,0] [3,1] [2,2]

M [3,1] [2,2] [1,3]

R [2,2] [1,3] [0,4]

Rădulescu, R., Mannion, P., Zhang, Y., Roijers, D. M., & 
Nowé, A. (2020). A utility-based analysis of equilibria in 
multi-objective normal-form games. The Knowledge 
Engineering Review, 35.

ESR L M R

L 16,0 10,3 8,4

M 10,3 8,4 10,3

R 8,4 10,3 16,0
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SER Equilibrium?
• In finite MONFGs, where each agent seeks to 

maximise the utility under SER, Nash 
equilibria need not exist. 

L M R

L [4,0] [3,1] [2,2]

M [3,1] [2,2] [1,3]

R [2,2] [1,3] [0,4]

Rădulescu, R., Mannion, P., Zhang, Y., Roijers, D. M., & 
Nowé, A. (2020). A utility-based analysis of equilibria in 
multi-objective normal-form games. The Knowledge 
Engineering Review, 35.
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Bridging continuous games and MONFGs 

• Continuous games:

• Single objective
• Infinite number of pure strategies
• Continuous payoff functions
• Benefit from many theoretical results
• Algorithmically challenging Röpke, W., Groenland, C., Rădulescu, R., 

Nowé, A., & Roijers, D. M. (2023). Bridging 
the Gap Between Single and Multi 
Objective Games. AAMAS 2023.

Assumption: convex strategy set
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Bridging continuous games and MONFGs 

• Build mapping between MONFGs and continuous games
• Ensure that it preserves key dynamics
• Leverage the link for theoretical and algorithmic improvements
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Bridging continuous games and MONFGs 

• Every mixed strategy in the MONFG 
becomes a pure strategy in the continuous 
game

Röpke, W., Groenland, C., Rădulescu, R., 
Nowé, A., & Roijers, D. M. (2023). Bridging 
the Gap Between Single and Multi 
Objective Games. AAMAS 2023.
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Bridging continuous games and MONFGs 
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Bridging continuous games and MONFGs 
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Bridging continuous games and MONFGs 
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Theoretical insights
• Mixed strategy equilibria in the MONFG are 

pure strategy equilibria in the continuous 
game

• Continuous games are not guaranteed to 
have a pure strategy Nash equilibrium

▶ Nash equilibria are not guaranteed in 
MONFGs
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More results

• Bridging the Gap Between Single and 
Multi Objective Games: Röpke, W., 
Groenland, C., Rădulescu, R., Nowé, A., & 
Roijers, D. M., AAMAS 2023

• Wednesday (10:45 - 12:30): Equilibria and 
Complexities of Gamesc session



@aibrussels

NE Existence Guarantees 
• Existence is guaranteed with (quasi)concave utility 

functions
• Used in economics as well
• Represents “well-behaved” preferences

• Intuition
• MONFGs can be reduced to continuous games
• In these game it is known that a pure strategy NE

 exists when assuming only quasiconcave utility 
functions

• This equilibrium is also an equilibrium in the original 
MONFG

Röpke, W., Roijers, D. M., Nowé, A., & 
Rădulescu, R. (2022). On nash 
equilibria in normal-form games 
with vectorial payoffs. Autonomous 
Agents and Multi-Agent Systems, 
36(2), 53.
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Non-existence 
• We can show that no Nash equilibrium exists in this game

• With strict convex utility functions

A B

A (2, 0); (1, 0) (1, 0); (0, 2)

B (0, 1); (2, 0) (0, 2); (0, 1)
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Commitment and Cyclic Strategies
• Commitment

• One or more players commit to playing a specific strategy
• Other players condition their own strategies on this 

commitment

• Leadership equilibria (in two-player games)
• The leader cannot improve their utility given that the 

follower plays a best-response
• Weak/strong leadership equilibria

• Prescribes how an opponent selects their 
best-response

Röpke, W., Roijers, D. M., Nowé, A., & Rădulescu, 
R. (2021). Preference Communication in 
Multi-Objective Normal-Form Games. Neural 
Computing and Applications (in press).
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Commitment and Cyclic Strategies
• Commitment can be strictly better than all Nash equilibria

• Commit may avoid the “fixed-point death trap”

A B

A (10, 2); (10, 2) (0, 0); (0, 0)

B (0, 0); (0, 0) (2, 10); (2, 10)

Nash equilibrium
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Theoretical considerations
• Commitment can be strictly better than all Nash equilibria

• Commit may avoid the “fixed-point death trap”

A B

A (10, 2); (10, 2) (0, 0); (0, 0)

B (0, 0); (0, 0) (2, 10); (2, 10)

The optimal mix is to play 
50% (A, A) and 50% (B, B)
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Theoretical considerations
• Commitment can be strictly better than all Nash equilibria

• Commit may avoid the “fixed-point death trap”

A B

A (10, 2); (10, 2) (0, 0); (0, 0)

B (0, 0); (0, 0) (2, 10); (2, 10)

The optimal mix is to play 
50% (A, A) and 50% (B, B)

• Joint cyclic strategy
• Player 1: {A, B}
• Player 2: {A, B}
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Theoretical considerations
• Commitment is not guaranteed to be as good as a Nash 

equilibrium
• If a player commits to a strategy, a malicious player might 

exploit this
• This has implications for a range of real-world applications

• Cyclic Nash equilibria may exist when no stationary equilibrium 
exists
• Stable solutions can still exist
• Provides a valid alternative for the goal of a learning 

algorithm
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Open questions 
• Commitment and cyclic strategies

• When can we guarantee that commitment cannot be exploited?
• What is the link between correlated equilibria and hierarchical 

equilibria?
• How to extend the Stackelberg game model to n-player games?
• Open computational problems

• Algorithm for learning or computing optimal commitment 
strategies?

• How to learn hierarchical strategies?
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Relations between optimisation criteria
• Mixed strategies

• No relation between both optimisation criteria in general

A B

A (1, 0); (1, 0) (0, 1); (0, 1)

B (0, 1); (0, 1) (-10, 0); (-10, 0)

A B

A 0.1; 0.1 0; 0

B 0; 0 -0.1; -0.1

No sharing of number of equilibria or equilibria themselves

Multi-objective reward vectors Scalarised utility for both agents
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Relations between optimisation criteria
• Pure strategies

• Pure strategy equilibrium under SER is also one under ESR
• Bidirectional when assuming (quasi)convex utility functions

• We can extend this to blended settings
• Pure strategy equilibrium under SER is also one in any 

blended setting
• Bidirectional when assuming (quasi)convex utility functions
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MOCGs for ESR with Generative Flow Models
• Team reward, team utility

• ESR set: policies require full 
distributions over returns rather 
than expected value to evaluate
• real-valued non-volume 

preserving transformations

• Distributional Multi-Objective 
Variable Elimination (DMOVE)

source

https://www.irasutoya.com/2014/03/blog-post_610.html
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Open questions 

• Results for more complex (e.g., sequential, partially observable) settings

• Integrated pipelines for planning -> negotiation -> execution

• Utility modelling

• Strategic disclosure of utility information to the other agents

• Benchmarks
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Multi-Objective Decision Making Workshop
• At ECAI 2023

• Kwaków, Poland

• Workshop: 
September 30 / October 1

• Deadline: June 30

• Special Issue: NCAA (IF 5.1) https://modem2023.vub.ac.be/

https://modem2023.vub.ac.be/
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Thank you for listening

• Feel free to ask any questions now

• Or drop us a message at: 
• d.roijers@amsterdam.nl 
• roxana.radulescu@vub.be 

• Or follow/add us on Twitter / LinkedIn

• Special thanks to Willem Röpke (VUB)!

mailto:d.roijers@amsterdam.nl
mailto:roxana.radulescu@vub.be
https://ai.vub.ac.be/team/willem-ropke/
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This tutorial was based (primarily) on
• Rădulescu, R., Mannion, P., Roijers, D. M., & Nowé, A. (2020). Multi-objective multi-agent 

decision making: a utility-based analysis and survey. Autonomous Agents and Multi-Agent 
Systems, 34(1), 1-52.

• Rădulescu, R., Mannion, P., Zhang, Y., Roijers, D. M., & Nowé, A. (2020). A utility-based 
analysis of equilibria in multi-objective normal-form games. The Knowledge Engineering 
Review, 35.

• Rădulescu, R. (2021). Decision Making in Multi-Objective Multi-Agent Systems: A 
Utility-Based Perspective. Brussels: Crazy Copy Center Productions.

• Röpke, W., Roijers, D. M., Nowé, A., & Rădulescu, R. (2022). Preference communication in 
multi-objective normal-form games. Neural Computing and Applications, 1-26.

• Röpke, W., Roijers, D. M., Nowé, A., & Rădulescu, R. (2022). On Nash equilibria in 
normal-form games with vectorial payoffs. Autonomous Agents and Multi-Agent Systems, 
36(2), 53.

• Röpke, W., Groenland, C., Rădulescu, R., Nowé, A., & Roijers, D. M. (2023). Bridging the Gap 
Between Single and Multi Objective Games. AAMAS 2023.


