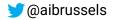


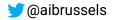
When Multiple Agents Care About More than One Objective

Diederik M. Roijers and Roxana Rădulescu

IJCAI Tutorial, Vienna, 2022



Tutorial Roadmap

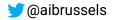


Part 1 - Multi-objective decision making in multi-agent systems

Motivation and basic concepts

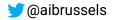
Going to the conference

Two players

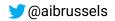

- rewards are public
- utility is private

MONFG

Why hard?


	Тахі	Tram	Walking
Тахі	(10€, 5min);	(20€, 5min);	(20€, 5min);
	(10€, 5min)	(2€, 15min)	(0€, 35min)
Tram	(2€, 15min);	(2€, 15min);	(2€, 15min);
	(20€, 5min)	(2€, 15min)	(0€, 35min)
Walking	(0€, 35min);	(0€, 35min);	(0€, 35min);
	(20€, 5min)	(2€, 15min)	(0€, 35min)

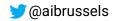
Multiple objectives



Because life is not simple

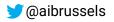
- What are your objectives for your current research project?
 - Publishing asap?
 - Quality of conference/journal?
 - Collaboration potential?
 - Flag-posting?
 - Increasing funding potential?
 - Finishing your PhD?

(D)	::(c)



Because life really is not simple

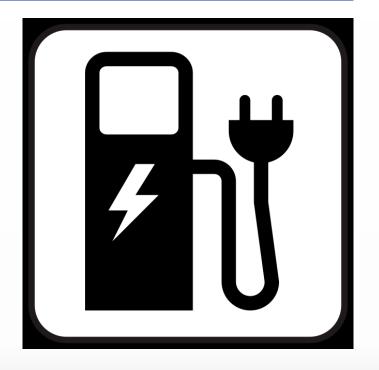
- What are your objectives for your current research project?
 - Publishing asap?
 - Quality of conference/journal?
 - Collaboration potential?
 - Flag-posting?
 - Increasing funding potential?
 - Finishing your PhD?
- How about your co-authors?

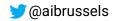


Multiple objectives!

- Most decision problems have multiple objectives
- Cannot scalarise a priori
 - Unknown, uncertain, or private utility
 - Non-linear utility
 - Changeable preferences/utility
 - Adjustability
 - Explainability for oversight and review purposes
- To scalarise is to throw away information

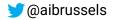
More and more MO


- Al has ever increasing impact on people's lives
- Ethical aspects more important
 - Human-aligned AI is a multi-objective problem [Vamplew et al., 2018]
- Explainability more important
 - Legal frameworks incoming
- Environmental concerns



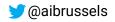
Example: electric vehicle charging

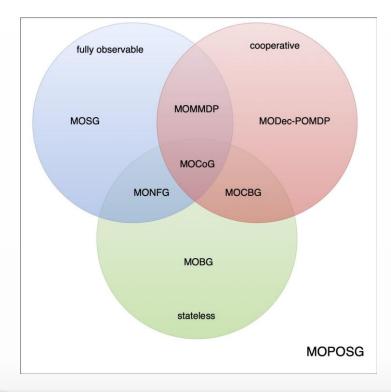
- meeting demands
- minimising costs
- preventing grid overloads



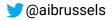
Modelling and dealing w/

Multiple objectives

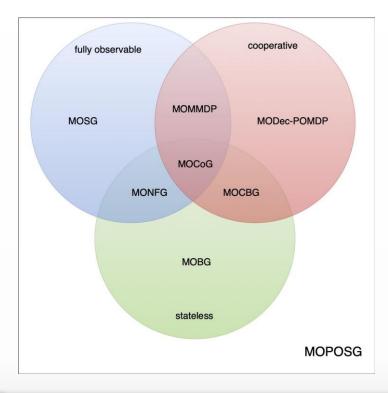



User utility is central to modelling

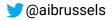
- User utility determines what is desirable for agents
- Stems from meaningful objectives (to the user)
 - Explainable
 - E.g., euros, minutes
- Identifying objectives
 - And then events that trigger rewards
- Decision-theoretic problem setting



MOPOSG

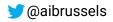


Models: On the basis of rewards (in objectives) and observations (about states).


MOPOSG

Models: On the basis of rewards (in objectives) and observations (about states).

But utility is not yet modelled!

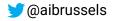


Life is still not simple

- What are your objectives for your current research project?
 - Publishing asap?
 - Quality of conference/journal?
 - Collaboration potential?
 - Flag-posting?
 - Increasing funding potential?
 - Finishing your PhD?
- Setting?

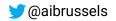
Life is still not simple at all?

- What are your objectives for your current research project?
 - Publishing asap?
 - Quality of conference/journal?
 - Collaboration potential?
 - Flag-posting?
 - Increasing funding potential?
 - Finishing your PhD?
- Truly cooperative though?



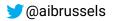
Utility-based approach

- Utility function, u_i , maps vector to scalar utility
- Total preference order (can always make a decision between alternatives)
- Utility determines what is optimal within available policies



Utility-based approach

- Solution should be derived from utility
 - Not axiomatically assumed
- This leads to a taxonomy based on rewards and utilities (Part 2)



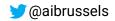
How to deal with MO problems

- Collect available information about user utility.
- Decide which policies (e.g., stochastic vs deterministic) are allowed.
- Derive the optimal solution concept from the resulting information of the first two points.
- Select or design an algorithm that fits the solution concept.
- When multiple policies are required for the solution, design a method for the user to select the desired policy among these optimal policies.



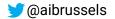
Part 2 - Structuring the MOMADM field

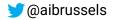
Taxonomy and solution concepts

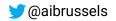


• Vectorial reward function

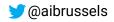
• Utility-based perspective


$$u_i \colon \mathbb{R}^d \to \mathbb{R}$$





- Expected Scalarised Returns (ESR)
 - Calculate the expectation of the utility from the payoffs
 - Utility of an individual policy execution

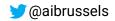


- Expected Scalarised Returns (ESR)
 - Calculate the expectation of the utility from the payoffs
 - Utility of an individual policy execution

- Scalarised Expected Returns (SER)
 - Calculate the utility of the expected payoff
 - Utility of the average payoff from several executions of the policy

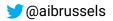
• Expected Scalarised Returns (ESR)

$$V_u^{\pi} = \mathbb{E}\left[u\left(\sum_{t=0}^{\infty} \gamma^t \mathbf{r}_t\right) \mid \pi, \mu_0\right]$$


• Scalarised Expected Returns (SER)

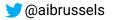
$$V_{u}^{\pi} = u\left(\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \mathbf{r}_{t} \mid \pi, \mu_{0}\right]\right)$$



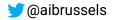


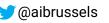
Taxonomy

Rădulescu, R., Mannion, P., Roijers, D. M., & Nowé, A. (2020). Multi-objective multiagent decision making: a utility-based analysis and survey. *Autonomous Agents and Multi-Agent Systems*, *34*(1), 1-52.

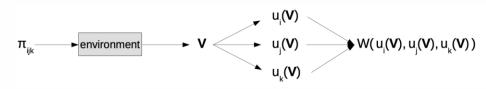


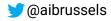
Taxonomy




Examples - Team Reward

- Team utility
 - a company that aims to be environmentally responsible, while maximising profits


Examples - Team Reward

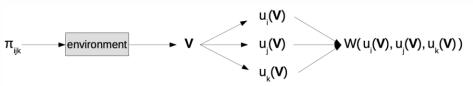

- Team utility
 - a company that aims to be environmentally responsible, while maximising profits
- Social Choice

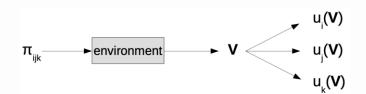
ARTIFICI

• highway tolls to regulate traffic π_{ik}

 environmentally respon maximising profits
 Social Choice

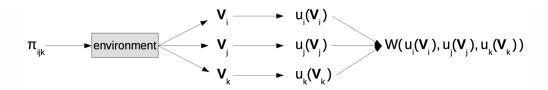
• highway tolls to regulate traffic

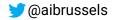

- Individual utility
 - participating in an event/planning a holiday together with your friends



 a company that aims to be environmentally responsible, while maximising profits

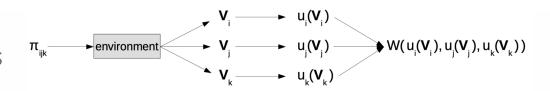
Examples - Team Reward

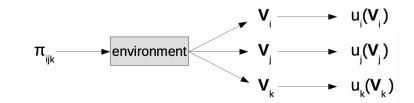




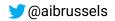
Examples - Individual Reward

- Social choice
 - bidding fee auctions

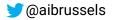




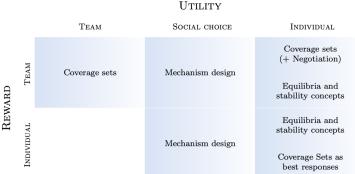
Examples - Individual Reward

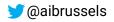

- Social choice
 - bidding fee auctions

- Individual utility
 - participating in city traffic, work commutes

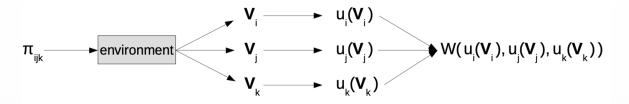


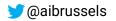
UTILITY


		TEAM	Social choice	Individual
REWARD	TEAM	Coverage sets	Mechanism design	Coverage sets (+ Negotiation) Equilibria and stability concepts
	INDIVIDUAL		Mechanism design	Equilibria and stability concepts Coverage Sets as best responses


Coverage sets

• Contain at least one optimal policy for each possible utility function


- TRTU: rewards and derived utility is shared between agents, with one utility function selected during execution
- TRIU: agent can (contractually) agree which policy to execute
- IRIU: set of possible best responses to the behaviour of other agents


Social Welfare and Mechanism Design

• System perspective: what is a socially desirable outcome

Design a system that forces agents to the truthful about their utilities and leads to optimal solution under W

INDIVIDUAL Coverage sets (+ Negotiation)

Equilibria and

stability concepts

Equilibria and stability concepts

Coverage Sets as best responses

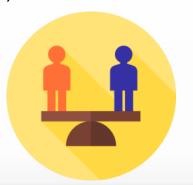
UTILITY

SOCIAL CHOICE

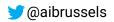
Mechanism design

Mechanism design

TEAM


Coverage sets

LEAM

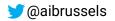

Reward

Equilibria and stability concepts UTILITY TEAM SOCIAL CHOICE INDIVIDUAL Coverage sets (+ Negotiation) Coverage sets Mechanism design Equilibria and Stable outcomes from which self-interested REWARD stability concepts Equilibria and stability concepts agents have no incentive to deviate Mechanism design Coverage Sets as

Nash equilibria, correlated equilibria, cyclic equilibria, coalition formation

best responses

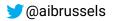
Nash Equilibrium


- No agent can improve their utility by unilaterally deviating from the joint strategy $\,\pi^{\rm NE}$
- Nash equilibrium under SER:

$$\mathbb{E}u_i\big[\mathbf{p}_i(\pi_i^{NE}, \pi_{-i}^{NE})\big] \ge \mathbb{E}u_i\big[\mathbf{p}_i(\pi_i, \pi_{-i}^{NE})\big]$$

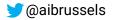
• Nash equilibrium under ESR:

$$u_i \left[\mathbb{E} \mathbf{p}_i(\pi_i^{NE}, \pi_{-i}^{NE}) \right] \ge u_i \left[\mathbb{E} \mathbf{p}_i(\pi_i, \pi_{-i}^{NE}) \right]$$



Other solution concepts

- Cyclic Nash equilibria
 - No agent can improve their utility by unilaterally deviating from the joint cyclic strategy
- Correlated equilibria
 - Correlated strategy probability vector σ on \mathcal{A}
 - External mechanism
 - No agent can improve their utility by unilaterally deviating from the recommendation of the correlated signal

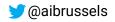


 $u(p_1, p_2) = p_1 \cdot p_2$

	Α	В
Α	<mark>(10, 2)</mark> ; (10, 2)	<mark>(0, 0)</mark> ; (0, 0)
В	<mark>(0, 0)</mark> ; (0, 0)	<mark>(2, 10)</mark> ; (2, 10)

Example - Nash equilibrium

$$u(10,2) = 10 \cdot 2 = 20$$

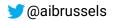


Example - Cyclic Nash equilibrium

$$u(6,6) = 6 \cdot 6 = 36 \qquad A \qquad (10,2); (10,2) \qquad (2,10); (2,10)$$

- Joint cyclic strategy
 - Player 1: {A, B}
 - Player 2: {A, B}

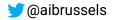
Example - Correlated equilibrium


$$u(6, 6) = 6 \cdot 6 = 36 \qquad A \qquad B$$

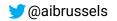
$$u(6, 6) = 6 \cdot 6 = 36 \qquad A \qquad (10, 2); (10, 2) \qquad (0, 0); (0, 0)$$

$$B \qquad (0, 0); (0, 0) \qquad (2, 10); (2, 10)$$

- Conclared sciency of
 - 50% (A, A)
 - 50% (B, B)

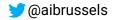


Latest results and open challenges



Multi-Objective Normal Form Games

- Introduced by Blackwell in 1956
- MONFG tuple (N , A, **p**), with $n \ge 2$ and $C \ge 2$ objectives, where:
 - N = {1, ..., n} set of players
 - $A = A_1 \times \cdots \times A_n$ set of actions
 - $\mathbf{p} = (\mathbf{p}_1, ..., \mathbf{p}_n) \text{vectorial payoffs}$



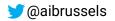
(Im)balancing Act Game

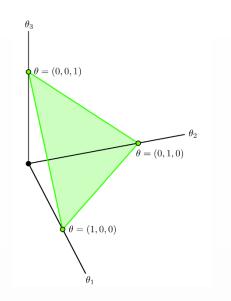

- 2 players, 2 objective
- Same payoff vector for both players

$$u_1([p_1, p_2]) = p_1^2 + p_2^2$$

$$u_2([p_1, p_2]) = p_1 \cdot p_2$$

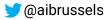
 In finite MONFGs, where each agent seeks to maximise the utility under SER, Nash equilibria need not exist.

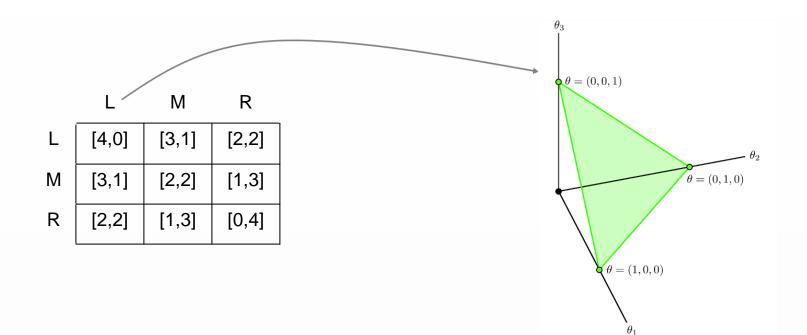


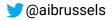

LMRL[4,0][3,1][2,2]M[3,1][2,2][1,3]R[2,2][1,3][0,4]

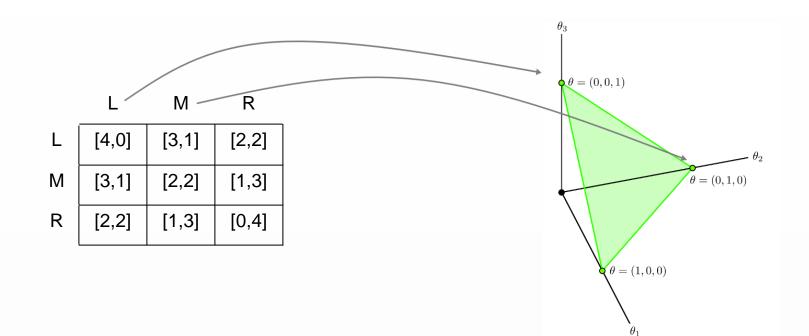
 $u_1([p_1, p_2]) = p_1^2 + p_2^2$ $u_2([p_1, p_2]) = p_1 \cdot p_2$

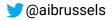
Rădulescu, R., Mannion, P., Zhang, Y., Roijers, D. M., & Nowé, A. (2020). A utility-based analysis of equilibria in multi-objective normal-form games. *The Knowledge Engineering Review*, *35*.

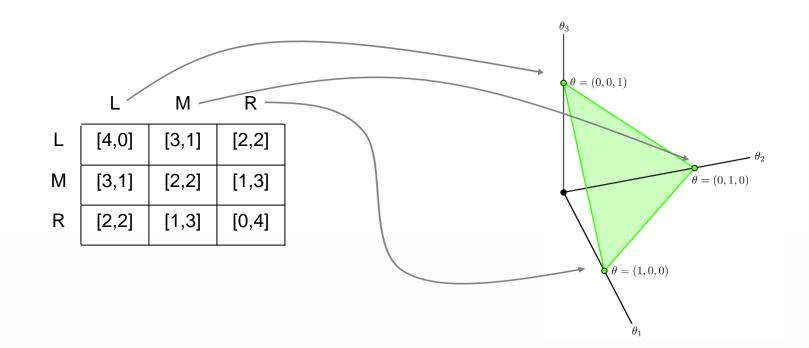


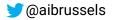

- Every MONFG with continuous utility functions can be reduced to a continuous game
- Continuous games:
 - Single objective
 - Infinite number of pure strategies
 - Reuse utility functions

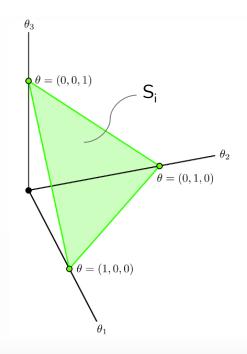

Röpke, W., Roijers, D. M., Nowé, A., & Rădulescu, R. (2021). On Nash Equilibria in Normal-Form Games With Vectorial Payoffs. *arXiv preprint arXiv:2112.06500*.

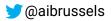


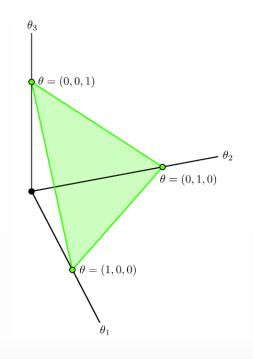


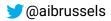


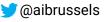




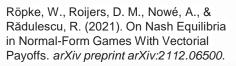


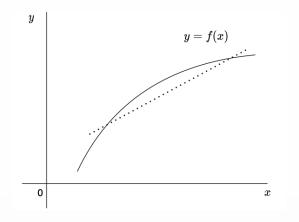





- Mixed strategy equilibria in the MONFG are pure strategy equilibria in the continuous game
- Continuous games are not guaranteed to have a pure strategy Nash equilibrium

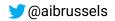
Nash equilibria are not guaranteed in MONFGs





NE Existence Guarantees

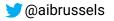
- Existence is guaranteed with (quasi)concave utility functions
 - Used in economics as well
 - Represents "well-behaved" preferences
- Intuition
 - MONFGs can be reduced to continuous games
 - In these game it is known that a pure strategy NE exists when assuming only quasiconcave utility functions
 - This equilibrium is also an equilibrium in the original MONFG


Non-existence

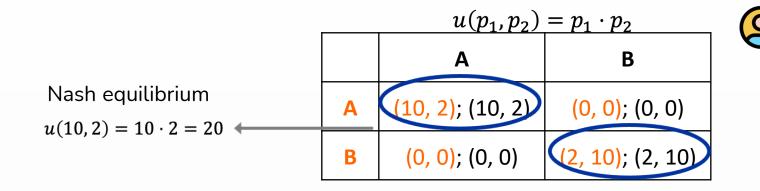
- We can show that no Nash equilibrium exists in this game
 - With strict convex utility functions

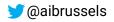
	Α	В
Α	<mark>(2, 0)</mark> ; (1, 0)	<mark>(1, 0)</mark> ; (0, 2)
В	<mark>(0, 1)</mark> ; (2, 0)	<mark>(0, 2)</mark> ; (0, 1)

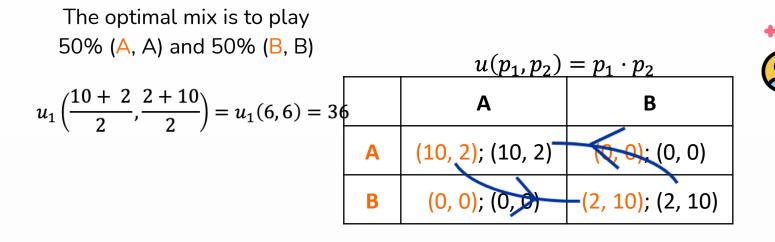
$$u_1(p_1, p_2) = u_2(p_1, p_2) = p_1^2 + p_2^2$$

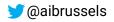

Commitment and Cyclic Strategies

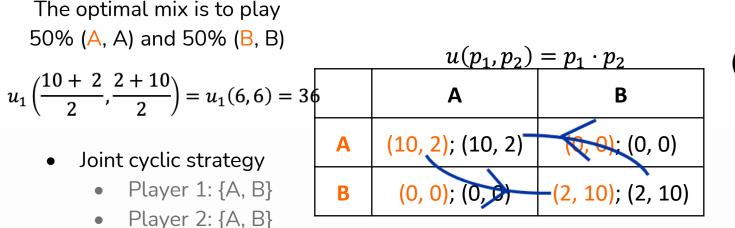
- Commitment
 - One or more players commit to playing a specific strategy
 - Other players condition their own strategies on this commitment
- Leadership equilibria (in two-player games)
 - The leader cannot improve their utility given that the follower plays a best-response
- Weak/strong leadership equilibria
 - Prescribes how an opponent selects their best-response

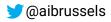

Röpke, W., Roijers, D. M., Nowé, A., & Rădulescu, R. (2021). Preference Communication in Multi-Objective Normal-Form Games. *Neural Computing and Applications (in press).*

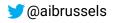



- Commitment can be strictly better than all Nash equilibria
 - Commit may avoid the "fixed-point death trap"




- Commitment can be strictly better than all Nash equilibria
 - Commit may avoid the "fixed-point death trap"



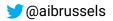

- Commitment can be strictly better than all Nash equilibria
 - Commit may avoid the "fixed-point death trap"

- Commitment is not guaranteed to be as good as a Nash equilibrium
 - If a player commits to a strategy, a malicious player might exploit this
 - This has implications for a range of real-world applications
- Cyclic Nash equilibria may exist when no stationary equilibrium exists
 - Stable solutions can still exist
 - Provides a valid alternative for the goal of a learning algorithm

Relations between optimisation criteria

- Mixed strategies
 - No relation between both optimisation criteria in general

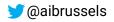
	Α	В
Α	<mark>(1, 0)</mark> ; (1, 0)	<mark>(0, 1)</mark> ; (0, 1)
В	<mark>(0, 1)</mark> ; (0, 1)	<mark>(-10, 0)</mark> ; (-10, 0)


Multi-objective reward vectors

	Α	В
Α	<mark>0.1</mark> ; 0.1	<mark>0</mark> ; 0
В	<mark>0</mark> ; 0	- <mark>0.1</mark> ; -0.1

Scalarised utility for both agents

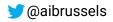
No sharing of number of equilibria or equilibria themselves



Relations between optimisation criteria

• Pure strategies

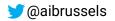
- Pure strategy equilibrium under SER is also one under ESR
- Bidirectional when assuming (quasi)convex utility functions
- We can extend this to **blended settings**
 - Pure strategy equilibrium under SER is also one in any blended setting
 - Bidirectional when assuming (quasi)convex utility functions



Open questions

• Commitment and cyclic strategies

- When can we guarantee that commitment cannot be exploited?
- What is the link between correlated equilibria and hierarchical equilibria?
- How to extend the Stackelberg game model to n-player games?
- Open computational problems
 - Algorithm for learning or computing optimal commitment strategies?
 - How to learn hierarchical strategies?



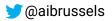
Open questions

- Results for more complex (e.g., sequential, partially observable) settings
- Integrated pipelines for planning -> negotiation -> execution
- Utility modelling
- Strategic disclosure of utility information to the other agents
- Benchmarks

Thank you for listening

• Feel free to ask any questions now

• Or drop us a message



This tutorial was based (primarily) on

- Rădulescu, R., Mannion, P., Roijers, D. M., & Nowé, A. (2020). Multi-objective multi-agent decision making: a utility-based analysis and survey. Autonomous Agents and Multi-Agent Systems, 34(1), 1-52.
- Rădulescu, R., Mannion, P., Zhang, Y., Roijers, D. M., & Nowé, A. (2020). A utility-based analysis of equilibria in multi-objective normal-form games. The Knowledge Engineering Review, 35.
- Rădulescu, R. (2021). Decision Making in Multi-Objective Multi-Agent Systems: A Utility-Based Perspective. Brussels: Crazy Copy Center Productions.
- Röpke, W., Roijers, D. M., Nowé, A., & Rădulescu, R. (2021). Preference Communication in Multi-Objective Normal-Form Games. Neural Computing and Applications (in press).
- Röpke, W., Roijers, D. M., Nowé, A., & Rădulescu, R. (2021). On Nash Equilibria in Normal-Form Games With Vectorial Payoffs. arXiv preprint arXiv:2112.06500.

