
Queued Pareto Local Search for
Multi-Objective Optimization

Maarten Inja, Chiel Kooijman, Maarten de Waard,
Diederik M. Roijers, Shimon Whiteson

{maarten.inja, chiel.kooijman, mrtndwrd}@gmail.com,
{d.m.roijers, s.a.whiteson}@uva.nl

Informatics Institute, University of Amsterdam

Abstract. Many real-world optimization problems involve balancing
multiple objectives. When there is no solution that is best with respect
to all objectives, it is often desirable to compute the Pareto front. This
paper proposes queued Pareto local search (QPLS), which improves on
existing Pareto local search (PLS) methods by maintaining a queue of
improvements preventing premature exclusion of dominated solutions. We
prove that QPLS terminates and show that it can be embedded in a genetic
search scheme that improves the approximate Pareto front with every
iteration. We also show that QPLS produces good approximations faster,
and leads to better approximations than popular alternative MOEAs.

1 Introduction

Many real-world optimization problems contain multiple objectives, e.g., when
mapping different processes of a software application to hardware components,
both processing time and power consumption should be minimized [7].

For specialized applications, it is sometimes possible to compute an exact
set of optimal trade-offs between the objectives, i.e., the Pareto front. However,
when the solution space of these problems is large, computing the Pareto front is
often intractable. In this case, multi-objective evolutionary algorithms (MOEAs)
[2] can compute a set of solutions that approximates the Pareto front. MOEAs
are general-purpose multi-objective optimization methods, and have been applied
to a large variety of optimization problems [1], from reinforcement learning [15]
to design space exploration [12].

To speed up MOEAs, one can use Pareto local search (PLS) algorithms [5,
9, 13]. PLS algorithms employ simple heuristic improvement algorithms to find
reasonably good solutions in a short time. PLS methods find an approximate
Pareto front by looking in the (search space) neighborhood of the individual
solutions in this archive for solutions that improve upon the current Pareto
archive. An important advantage of this method is that the size of the archive is
not limited. This is important because the size of the Pareto front is often not
known in advance.

However, an important downside of current PLS methods is that promising
solutions are excluded from the Pareto-archive when an improvement is found for
another (unrelated) solution, before they have a chance to improve themselves.

2

Such premature deletions from the archive are undesirable since they reduce
genetic diversity that might be needed to find part of the Pareto front.

In this paper, we propose a new algorithm for Pareto local search that we
call queued Pareto local search (QPLS), which stores promising solutions in a
queue. When such a solution is popped off the queue, QPLS performs strict
Pareto improvements by looking for a stricly better solution (in all objectives) in
the neighborhood of the solution. Only when such improvements are no longer
possible, is it compared to a Pareto archive. This prevents premature deletion of
solutions. Unlike other PLS methods, the queued approach “protects” dominated
solutions until they are mutated to a locally optimal state. As in previous PLS
work, we embed QPLS in a genetic scheme.

We empirically compare Genetic QPLS against the state-of-the-art PLS
method Genetic SPLS [5], and against the popular non-PLS MOEAs NSGA-II
[3] and SPEA2 [21], using multi-objective coordination graphs [16, 17]. We show
that QPLS can produce good approximate fronts for much larger problems than
that can be solved with exact methods (such as [18]). Furthermore, we show that
Genetic QPLS maintains a Pareto set with a larger hypervolume [19] than the
other algorithms both in the short and long run.

2 Background
We first introduce the problem setting and notation used throughout the paper.
A multi-objective optimization problem (MOOP) is a tuple < V,S, f >, where:

– V = {v1, ..., vn} is the set of n enumerated variables,
– S = S1× ...×Sn is the search space, i.e., the Cartesian product of the domains

of the variables in V, and
– f : S → <d is a d-objective fitness function that maps all points in the search

space to a d-objective fitness. We refer to the value of the i-th objective as fi.

We define the neighborhood of s, N (s), as the set of solutions that differ in
exactly one variable. We assume that each objective needs to be maximized.
We refer to an approximation to the Pareto front as a Pareto archive, denoted
P . A solution s Pareto dominates a solution s′ when its fitness is larger in
one objective, and at least equal in all the others: f(s) � f(s′) = ((∀i) fi(s) ≥
fi(s

′)) ∧ ((∃j) fj(s) > fj(s
′)). In a Pareto archive, there are no solutions that

are Pareto dominated by another solution in that set. We say that a solution s
weakly dominates another solution s′, when it either dominates it, or has equal
value. If s does not dominate s′ and s′ does not dominate s then s and s′ are
incomparable. Two Pareto archives P and P ′ can be merged [5] by taking the
union and removing the dominated solutions.

2.1 Non-PLS Methods

Many MOEAs (e.g., [3, 21]) do not employ PLS but instead maintain a population
of individual solutions that are improved upon via mutation and crossover
operators. When these operators are ergodic, the entire search space is scanned
in the limit [6]. This guarantees that MOEAs do not get permanently stuck in
local optima. This holds even for MOEAs that do not employ PLS.

3

Two popular MOEAs that do not employ PLS are NSGA-II [3] and SPEA2 [21].
NSGA-II applies elitism, uses a fast sorting algorithm and focuses on maintaining
diversity within the population. SPEA2 employs a measure of strength for a
solution based on the number of solutions that dominate it, the number of
solutions that are dominated by it, and the distance to the k-th nearest neighbor.
The advantage of both is that their population diversity prevents them from
getting stuck in local optima. However, neither of these algorithms employ
heuristics to find better solutions more quickly. NSGA-II and SPEA2 are the two
most popular algorithms for MOOPs [20].

2.2 PLS Methods

Paquete et al. [13] propose a Pareto local search (PLS) algorithm that maintains
an archive of non-dominated solutions P . Each solution s ∈ P is visited to search
its neighborhood N (s) for new solutions. This is achieved by merging the entire
neighborhood of s into P . A drawback is that the neighborhood of one solution
can overwrite the whole archive (especially early on), while the neighborhoods
of the overwritten solutions can contain solutions that would improve P even
further. Drugan and Thierens [5] propose a variation in which improvements are
made to the archive by adding a single improving solution with respect to P
(Pareto-dominant or Pareto-incomparable) from the neighborhood N (s) of one
solution s ∈ P at a time. This reduces the probability that promising solutions
in P are deleted after an improvement from a different solution. However, the
removed dominated solutions might still have had possible improvements.

Liefooghe et al. [9] generalize PLS algorithms into several categories based
on the current set selection for neighborhood scanning, exploration strategy,
archiving method and stopping conditions. Two types of archiving methods
are considered. An unbounded archive can be used to store the set of all non-
dominated solutions and a bounded archive stores a subset of the non-dominated
solutions. Some algorithms only store the dominating solutions as the archive is
filled. Other algorithms employ diversity criteria, such as crowding distance or
ε-dominance, to limit the size of the archive. However, all of these algorithms
generate improvements from the neighborhood of current elements of the archive
and directly delete members of the archive due to these improvements, even
though these deleted elements could yield improvements if their neighborhoods
were inspected.

Two distinct strategies can be employed to select the next improving solution
s′ from the neighborhood of s, N (s). In the best-improvement strategy the
entire neighborhood N (s) is scanned for the best improvement. The selected
improvement s′ is guaranteed not to be dominated by another other solution
in N (s). In the first-improvement strategy, the first solution s′ in N (s) that
improves s is returned immediately. Hansen and Mladenović [8] find that for
single-objective LS, first-improvement usually leads to better empirical results.
Liefooghe et al. [9] confirm this result for PLS algorithms, as do Drugan and
Thierens [5] for SPLS.

4

3 QPLS

Our main contribution, queued Pareto local search, is given in Algorithm 1. QPLS
prevents the premature deletion of promising solutions by maintaining a queue
of solutions to improve, which leads to a more diverse Pareto archive.

Algorithm 1 QPLS(f , Q, k)

Require: Initial queue Q
1: H the Pareto front
2: P ← ∅
3: while Q.notEmpty() do
4: s← Q.pop()
5: H recursive local improvements
6: s← PI(s, f)
7: H s undominated by P
8: if ∀p ∈ P : f(s) ⊀ f(p) ∧ f(s) 6= f(p)
9: P ← merge(P, {s})

10: H new candidates
11: N←{s′∈N (s) : s 6�s′}
12: Q.addK(N, k)
13: end if
14: end while
15: return P

Algorithm 2 GQPLS(α, pM)

Require: A random initial Q
1: P ← QPLS(Q, I)
2: while NOT Stopping condition do
3: Q.clear()
4: for s ∈ P do
5: if α > U(0, 1) or |P | < 2
6: s′ ← Mutate(s, pM)
7: else
8: Select s1 6= s from P
9: s′ ← Recombine(s, s1)

10: end if
11: Q.add(s′)
12: end for
13: P ← merge(P, QPLS(Q))
14: end while
15: return P

The algorithm starts with an initial queue Q of candidate solutions, and an
empty Pareto archive (line 2). Until the queue is empty, these candidate solutions
are popped one by one (line 3–14). When a solution s is obtained from the queue,
it first runs a recursive Pareto improvement function (PI) at line 6. PI improves
solutions by repeatedly selecting a dominating solution from the neighborhood,
until such improvements are no longer possible.

After a solution s is found that is not dominated by any of its neighbors, it is
compared to the Pareto archive P (line 8), and when it is not weakly dominated
by any solution in P , s is merged into P (line 9). Then, new candidate solutions
are selected from the neighbors of s. The set N on line 11 is the set of neighbors
of s that are incomparable to s. From N , k candidates are randomly selected to
be added to the queue. By setting the parameter k, the amount of exploration in
the neighborhood of one solution can be controlled. Making k too large leads to
exploring a lot of unsuccessful candidates initially, whereas making k too small
reduces the archive’s genetic diversity. We typically choose k between 2 and 10.

Following previous work [5, 8], we can distinguish two strategies for PI, a
best-improvement and a first-improvement implementation. Unlike SPLS, where
improvements are applied once per iteration, we apply the improvements re-
cursively until no improvement can be found. Because solutions that have not
yet been optimized are protected in the queue, we do not have to worry about
premature deletions from our intermediate Pareto archive.

QPLS guarantees that all solutions in the Pareto archive are Pareto-undominated
with respect to their neighborhoods at any given time while the algorithm runs.
Furthermore, it can be proved that, in a finite state space, QPLS terminates in a
finite number of steps for any finite initial queue. This is because there can be

5

only a limited number of steps to any archive P ∗, and because there can be no
cycles in its execution.

However, QPLS converges to a locally optimal set. A naive method to find
better approximate Pareto fronts than the single locally optimal set returned by
QPLS is just to restart QPLS with different random initial queues, and merge
the result, i.e., multi-start QPLS (MQPLS). However, MQPLS does not exploit
the results of the individual QPLS runs to focus on more promising regions.

4 Genetic QPLS

Genetic QPLS (GQPLS) escapes local optima by mutating and recombining the
entire Pareto archive that result from individual QPLS runs. After a single QPLS
run, we can mutate all the solutions in the archive, and restart PLS with these
mutated solutions as input. In the case of QPLS, this input is the initial queue.

The genetic local search (GLS) scheme combines mutation and recombination.
We define GQPLS in Algorithm 2. It escapes local optima by restarting QPLS with
a set of new solutions, consisting of mutations and recombinations of solutions
from Pareto archive P returned by single QPLS runs. The implementation of the
genetic operators Mutate and Recombine are dependent on the problem.

GQPLS starts by running QPLS on an initial queue Q to find a locally optimal
Pareto archive P on line 1. On lines 3 to 12, a new queue is created which consists
of mutations and recombinations from the previous archive. For each solution
s ∈ P , either (with probability α) a mutation of s is generated (line 6), or (with
probability 1− α) we use a recombination of s with a random of solution s′ 6= s
from the archive (line 9). The newly generated solution is then added to the new
queue. Finally, QPLS is called again with the new queue, and the result of which
is merged into P. Because we use the Pareto dominance relationship in merge,
the archive can only improve or remain the same. GQPLS runs indefinitely or
until some stopping condition is met.

When the crossover probability α = 0, one could regard this as an iterated [4,
10] version of QPLS. We view iterated QPLS as a special case of GQPLS.

5 Experiments

We compare QPLS to existing PLS and non-PLS MOEAs on randomly generated
multi-objective coordination graphs (MO-CoGs) [16], which are single-state prob-
lems from the multi-agent literature in which agents must work together in order
to obtain a shared (vector-valued) reward. Not only do these problems form an
important problem on their own (e.g., for resource gathering [16] or risk-sensitive
combinatorial auctions [11]), they are also a key subproblem in more elaborate
sequential settings (such as transport network maintenance planning [14]). In
these settings, time is often limited, making fast heuristic methods key to their
applicability. Additionally, MO-CoGs allow for fast evaluation of a mutation of
an evaluated solution, which makes it possible to perform faster local search.
MO-CoGs form a class of flexible and scalable problems that can vary in size
(the number of variables and the size of the search space) and in complexity (the
complexity of the graphs), making them interesting MOEA benchmarks.

6

MO-CoGs are MOOPs in which V is a set of n enumerated agents, S = A =
A1 × . . . × An is the Cartesian product of the action spaces of the individual
agents. A specific joint action is denoted a. Finally, f is a vector sum over a set
of local payoff functions U : f(a) =

∑
ue∈U ue(ae). A local payoff function ue has

limited scope e, i.e., only a subset of agents participate in it. A local joint action
of the agents that participate in ue is denoted ae. The local joint actions ae on
the righthand side are derived from the full joint action a on the lefthand side.

The local payoff functions and the agents can be seen as the two sets of nodes
in a bipartite graph whose edges indicate which agents participate in which local
payoff functions. A small example graph with 3 agents (circles) and 2 local payoff
functions is shown in Fig. 1.

To generate MO-CoGs, we follow the random graph generation procedure
proposed by Roijers et al. [16]. This procedure takes the following input variables:
n, the number of agents; d, the number of objectives; ρ the number of local
payoff functions; and |Ai|, the action space size, which in this procedure is the
same for all agents. The values in each local payoff function are filled with
real numbers drawn independently from a uniform distribution on the interval
0 < ue,i(ae) < 10.

 3 1 2 3

u u 1 2

Fig. 1. A coordination graph

The payoff for a single local function depends
on the actions of all connected agents, and each
agent can participate in several local payoff func-
tions. Therefore, getting good payoffs requires care-
fully coordinated actions. Randomly changing the
action of random agents in a carefully balanced
solution can therefore cause the coordination to
collapse. To minimize the impact of changes in a
solution but still be able to escape from local optima, the function Recombine
copies the actions for adjacent agents from each solution. Specifically, it uses
the graph structure to decide where it is divided: starting with a random payoff
function, it adds the action from the first solution and iterates breadth-first over
the agents in the graph, stopping with a probability pS or when half of the graph
has been covered. The other actions are taken from the second solution. pS was
chosen so that the expected number of actions changed is a third of the total.

The Mutate operator, by contrast, does not take graph structure into account.
It returns a new solutions that is a copy of its argument, except that every action
has a probability pM = 0.05 to switch to a random action in its action space.

We compare against two non-PLS-employing MOEAs: NSGA-II and SPEA2,
and against the PLS-employing method we emprically found best for MO-CoGs:
Drugan and Thierens’ first-improvement genetic SPLS [5]. We employ the same
Mutate and Recombine operators described above for all methods. All algorithms,
as well as the problem, were implemented in JAVA. All experiments were run on
an Intel Core i7-3610QM quad core CPU at 2.30GHz.

7

5.1 Parameter optimization

For MO-CoGs of varying size, we optimized the parameters for each algorithm
separately. For SPEA2 a low probability of crossover (0.2) was better than only
using mutation. For NSGA-II 0.0 was best.

Genetic SPLS yielded the best results when the mutation probability α was
set to 0.5. The first Pareto-improvement exploration strategy (as was also found
by Drugan and Thierens [5] for quadratic assignment problems) was best.

Surprisingly, for Genetic QPLS the mutation only probability was best set to
α = 1. This can be explained by the observation that GQPLS has little trouble
finding good solutions in the center of the Pareto front but more difficulty finding
them around the edges of the Pareto front (as shown Fig. 4, which we discuss
further in Sect. 5.3). Recombining values from the center of the front may be
less likely to yield results on the edges, where the combination of two solutions
from different edges would result in a solution around the center.

For GQPLS, recursive best Pareto-improvement performed best. This contra-
dicts findings for earlier PLS algorithms [9], including GSPLS, the best other
PLS algorithm for this problem. This can be explained by the protection of
candidate solutions in the queue of QPLS. Best-improvement takes bigger steps
on average; therefore, in other PLS algorithms, the probability that promising
solutions in the Pareto archive are dominated by the resulting improvements
and thus prematurely deleted, is higher as well. Because QPLS does not run
the risk of deleting other candidate solutions from the queue, the best possible
improvement strategy just speeds up the search.

The maximal numbers of additions to the queue in QPLS was best set to
k = 5. When k was set higher, the individual runs of QPLS took longer, with only
slightly better results (that were more easily achieved with the genetic scheme),
and when k was lower the Pareto archives were initially narrower.

5.2 Approximation of the Pareto Front

We generated small MO-CoGs for which P ∗ was computed exactly using multi-
objective bucket elimination (MO-BE) [18]. We generated 2-objective MO-CoGs
of n = 5 to n = 30 agents, with ρ = 1.5n and |Ai| = 10. For larger MO-CoGs,
it is not feasible to compute the true Pareto front, as MO-BE has a runtime
that is exponential in the number of agents [16], and for more than 30 agents, its
memory requirements become intractable.

Pareto-set approximations are evaluated in terms of the hypervolume [22] as
a function of runtime. The hypervolume is defined as the volume of reward space
that is dominated between the positive reward origin and the Pareto archive.

In a large portion of MOEA literature, methods are compared using the
number of fitness evaluations instead of time. However, PLS methods do not do
full fitness evaluations quite as often. Instead, they perform many tiny changes on
a local level, which can be evaluated in a fraction of the time, and only evaluate
fitness fully after recombinations and mutations. As a result, comparing the
number of fitness evaluations gives an incomplete and possibly misleading picture
of the computational costs. Hence, we measure hypervolume as a function of
runtime rather than number of evaluation function calls.

8

GQPL
S

NSG
A-II

SP
EA

2
GSP

LS
86

88

90

92

94

96

98

100

Tr
ue

 H
yp

er
vo

lu
m

e
%

5 Agents

GQPL
S

NSG
A-II

SP
EA

2
GSP

LS

10 Agents

GQPL
S

NSG
A-II

SP
EA

2
GSP

LS

15 Agents

GQPL
S

NSG
A-II

SP
EA

2
GSP

LS

20 Agents

GQPL
S

NSG
A-II

SP
EA

2
GSP

LS

25 Agents

GQPL
S

NSG
A-II

SP
EA

2
GSP

LS

30 Agents

Fig. 2. Percentage of the real hypervolume found by GQPLS, NSGA-II, SPEA2 and
GSPLS after 15 minute runs on MO-CoGs of varying size; 10 runs per problem size.

0 2 4 6 8 10 12 14
Time (minutes)

70

75

80

85

90

95

100

Tr
ue

 H
yp

er
vo

lu
m

e
%

GQPLS
GSPLS
NSGA-II
SPEA2

0 10 20 30 40 50 60
Time (minutes)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Hy
pe

rv
ol

um
e

1e7

GQPLS
GSPLS
NSGA-II
SPEA2

0 20 40 60 80 100 120
Time (minutes)

1.5

2.0

2.5

3.0

3.5

4.0

Hy
pe

rv
ol

um
e

1e10

GQPLS
GSPLS
NSGA-II
SPEA2

Fig. 3. The hypervolume as a function of time for one randomly generated MO-CoG for
all tested MOEAs. (left) An n = 30, d = 2 MO-CoG, with hypervolume as a percentage
of the hypervolume of the true Pareto front. (middle) An n = 300, d = 2 MO-CoG.
(right) An n = 300, d = 3 MO-CoG.

2200 2400 2600 2800 3000 3200 3400 3600 3800
Reward d1

2200

2400

2600

2800

3000

3200

3400

3600

3800

Re
w

ar
d
d

2

GQPLS
GSPLS
NSGA2
SPEA2

2200 2400 2600 2800 3000 3200 3400 3600 3800
Reward d1

2200

2400

2600

2800

3000

3200

3400

3600

3800

Re
w

ar
d
d

2

GQPLS
GSPLS
NSGA2
SPEA2

2200 2400 2600 2800 3000 3200 3400 3600 3800
Reward d1

2200

2400

2600

2800

3000

3200

3400

3600

3800
Re

w
ar

d
d

2

GQPLS
GSPLS
NSGA2
SPEA2

Fig. 4. The Pareto-archives found by GQPLS, GSPLS, NSGA-II and SPEA2 on a
n = 300 MO-CoG: (left) after 20 seconds, (middle) 5 minutes, and (right) 1 hour.

Figure 2 shows the fraction of the hypervolume of P ∗ that is found by the
MOEAs within 15 minutes in quantiles. All methods produce less accurate
approximations as the problem size increases. However, GQPLS performs better
in terms of best, worst, and mean results than the other methods.

Figure 3 (left) shows the growth of the hypervolume over time for an n = 30
MO-CoG. After 15 minutes, all methods are still improving their Pareto fronts but
GQPLS has better approximations than the other algorithms at every timestep.
When comparing GQPLS to MO-BE in the 30-agent setting, we found that after
one iteration, which on average took 0.37% of the time required by MO-BE to
calculate the true Pareto front, GQPLS found a Pareto archive that covered
92.4% of the hypervolume of P ∗.

We conclude that GQPLS can approximate P ∗ better and more quickly
than GSPLS, NSGA-II and SPEA2 for small problems, and that the difference
in approximation quality tends to get bigger as the problem size increases.
Furthermore, GQPLS provides good results in a fraction of the time MO-BE
takes to find P ∗.

9

5.3 A Large MO-CoG
One the strengths of MOEAs lies in the fact that they can return approximate
results when calculating the exact Pareto front is intractable. Figure 3 shows
the results for n = 300, d = 2 (middle) and n = 300, d = 3 (right). In the d = 2
problem, GQPLS outperforms the other algorithms by a large margin, while
the difference is smaller in the d = 3 problem. A likely explanation is that the
benefit of protecting diversity (by using the queue) provides a smaller benefit in
higher dimensional problems, as there are more ways in which solutions can be
Pareto-equivalent, and thus fewer solutions are dominated and discarded.

Figure 4 shows how the fronts develop over time. Both NSGA-II and SPEA2
have a wide spread from early on and move slowly towards a higher reward
in both dimensions. Both GSPLS and GQPLS improve towards the center of
the graph first, but where GSPLS has difficulty widening the front, GQPLS is
able to explore the front’s edges while also finding improvements in the center.
We hypothesize that this is because improvements on the edges are often the
result of mutations that first take a rather big step back in both objectives and
only turn out well after a full recursive Pareto-improvement run. It is precisely
these mutations that need to be protected from premature deletion until such
improvement has taken place.

Overall, these results show that, like other PLS-based methods, GQPLS finds
a relatively good approximate front quickly and continues to improve in order to
find the best approximations. We therefore conclude that using a PLS method
that employs queues to protect promising candidates during Pareto local search
can lead to great speed-ups in MOEAs.

6 Discussion & Conclusion
In this paper, we proposed a PLS algorithm based on the principle that newly
mutated solutions should be allowed to find their full potential before comparing
them to other solutions. QPLS therefore protects these solutions in a queue. We
embedded QPLS in a genetic search scheme, yielding Genetic QPLS, to escape
from local optima. QPLS terminates and GQPLS finds the true Pareto front in the
limit. We showed empirically that QPLS outperforms other popular evolutionary
multi-objective algorithms on random generated multi-objective coordination
graphs, where mutations of known sulutions can be evaluated efficiently.

In future work, we aim to employ ideas from other successful algorithms,
such as NSGA-II and SPEA2, and focus the search on those regions of the value
space that are less “crowded” by other solutions. The crowding distance, as
defined by NSGA-II, can be used for such purposes. There are several ways the
crowding distance could be employed: (1) embed it inside QPLS to let solutions
with a higher crowding distance produce more candidate solutions in the queue,
(2) use it inside recursive best Pareto improvement to discriminate between
Pareto incomparable solutions, or (3) use it to seed new initial queues in the
outer loop of GQPLS. Furthermore we would like to compare GQPLS to more
recent MOEAs such as those reviewed by Zavala et al. [20].

Acknowledgements This research is supported by the NWO DTC-NCAP
(#612.001.109) project.

10

References
1. C. A. C. Coello and G. B. Lamont. Applications of multi-objective evolutionary

algorithms, volume 1. World Scientific, 2004.
2. C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuisen. Evolutionary algorithms

for solving multi-objective problems. Springer, Heidelberg, 2007.
3. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sort-

ing genetic algorithm for multi-objective optimization: NSGA-II. LNCS, 1917:849–
858, 2000.

4. M. M. Drugan and D. Thierens. Path-guided mutation for stochastic Pareto local
search algorithms. In Parallel Problem Solving from Nature, PPSN XI, pages
485–495. Springer, Heidelberg, 2010.

5. M. M. Drugan and D. Thierens. Stochastic Pareto local search: Pareto neighbour-
hood exploration and perturbation strategies. J Heur, 18(5):727–766, 2012.

6. R. C. Eberhart and Y. Shi. Comparison between genetic algorithms and particle
swarm optimization. In Evolutionary Programming VII, pages 611–616. Springer,
Heidelberg, 1998.

7. C. Erbas, S. Cerav-Erbas, and A. D. Pimentel. Multiobjective optimization and
evolutionary algorithms for the application mapping problem in multiprocessor
system-on-chip design. Evolutionary Computation, IEEE Transactions on, 10(3):358–
374, 2006.

8. P. Hansen and N. Mladenović. First vs. best improvement: An empirical study.
Discrete Appl Math, 154(5):802–817, 2006.

9. A. Liefooghe, J. Humeau, S. Mesmoudi, L. Jourdan, and E.-G. Talbi. On dominance-
based multiobjective local search: design, implementation and experimental analysis
on scheduling and traveling salesman problems. J Heur, 18(2):317–352, 2012.

10. H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search. arXiv preprint
math/0102188, 2001.

11. R. Marinescu. Efficient approximation algorithms for multi-objective constraint
optimization. In ADT, pages 150–164. Springer, Heidelberg, 2011.

12. S. Obayashi, S. Jeong, and K. Chiba. Multi-objective design exploration for
aerodynamic configurations. AIAA, 4666:2005, 2005.

13. L. Paquete, M. Chiarandini, and T. Stützle. Pareto local optimum sets in the
biobjective traveling salesman problem: An experimental study. In Metaheuristics
for Multiobjective Optimisation, pages 177–199. Springer, Heidelberg, 2004.

14. D. M. Roijers, J. Scharpff, M. T. Spaan, F. A. Oliehoek, M. de Weerdt, and
S. Whiteson. Bounded approximations for linear multi-objective planning under
uncertainty. In ICAPS, 2014.

15. D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley. A survey of multi-objective
sequential decision-making. JAIR, 47:67–113, 2013.

16. D. M. Roijers, S. Whiteson, and F. A. Oliehoek. Computing convex coverage sets
for multi-objective coordination graphs. In Algorithmic Decision Theory, pages
309–323. Springer, Heidelberg, 2013.

17. D. M. Roijers, S. Whiteson, and F. A. Oliehoek. Linear support for multi-objective
coordination graphs. In Proceedings of the 2014 international conference on Au-
tonomous agents and multi-agent systems, pages 1297–1304. International Founda-
tion for Autonomous Agents and Multiagent Systems, 2014.

18. E. Rollón and J. Larrosa. Bucket elimination for multiobjective optimization
problems. Journal of Heur, 12(4-5):307–328, 2006.

19. P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, and E. Dekker. Empirical evaluation
methods for multiobjective reinforcement learning algorithms. Mach Learn, 84(1-
2):51–80, 2011.

20. G. Zavala, A. Nebro, F. Luna, and C. A. C. Coello. A survey of multi-objective
metaheuristics applied to structural optimization. Struct Multidiscip O, pages 1–22,
2013.

21. E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength Pareto
evolutionary algorithm, 2001.

22. E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary algorithms—
a comparative case study. In Parallel problem solving from nature—PPSN V, pages
292–301. Springer, Heidelberg, 1998.

