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Abstract. When forming coalitions, agents have different utilities per coalition.
Game-theoretic approaches typically assume that the scalar utility for each agent
for each coalition is public information. However, we argue that this is not a real-
istic assumption, as agents may not want to divulge this information or are even
incapable of expressing it. To mitigate this, we propose the multi-criteria coali-
tion formation game model, in which there are different publicly available qual-
ity metrics (corresponding to different criteria or objectives) for which a value
is publicly available for each coalition. The agents have private utility functions
that determine their preferences with respect to these criteria, and thus also with
respect to the different coalitions. Assuming that we can ask agents to compare
two coalitions, we propose a heuristic algorithm for finding stable partitions in
MC2FGs: local stability search (LSS). We show that while theoretically individ-
ually stable partitions need not exist in MC2FGs in general, empirically stable
partitions can be found. Furthermore, we show that we can find individually sta-
ble partitions after asking only a small number of comparisons, which is highly
important when we want to apply this model in practice.
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1 Introduction

Coalitions are an essential part of life; typically we are not able to achieve our goals,
or that of an organisation we are part of, by ourselves. Therefore, we need to coop-
erate in order to achieve these goals. Hedonic games, initiated by Banerjee et al. [3]
and Bogomolnaia and Jackson [4], offer a versatile framework to model how coalitions
are formed by multiple (human or artificial) autonomous agents. An important consid-
eration in this respect is coalitional/individual stability, i.e., no group of players nor
individuals wish to deviate from their current situation.

In order to determine which coalition structures are stable, we need to know the
preferences over different possible coalitions for each agent. The standard setting of he-
donic games [5] assumes that we know, or can compute, the exact preferences of each
agent over possible coalitions. However, this is not a realistic assumption; not only
may agents not want to divulge this information for social or privacy reasons, but the
agents might not even be able to specify their utilities a priori to begin with. For exam-
ple, when working for a company, it may not be socially acceptable to order different



possible teams you may be on. Indeed, Balcan et al. [2] study the PAC (probably ap-
proximately correct) learnability of cooperative transferable utility games. Specifically,
they investigate whether one can efficiently predict the unseen values of coalitions, with
polynomial number of randomly sampled coalitions and their values.

In this paper, we aim to mitigate this lack of information in two important ways.
First, we take the information we do have into account, in the form of different quality
metrics for coalitions. E.g., a manager who wants to assign teams, may rely on statis-
tics from previous teams, such as a previous productivity metric, a number of occurred
conflicts, and reports by previous team leaders on how creative teams have been. Com-
bining this with a predictor for new possible coalitions, we may assign an expectation
of how well such a team will do with respect to these criteria. This leads us to the for-
mulation of a multi-criteria coalition formation game (MC2FG), i.e., we have access to
the quality of a coalition with respect to multiple quality criteria.

Contrary to previous work on related (vector-valued) cooperative games [15], we
take a utility-based approach [13]: we assume that each agent, i, has a private utility
function, f (i), that takes the multi-criterion value of a coalition, and produces a scalar
utility. Because these functions are private, we cannot use these to check whether a
proposed coalition is stable. We are however able to make some assumptions about f (i),
e.g., that it is a monotonically increasing function w.r.t. all criteria. Furthermore, we
assume that we can increase our knowledge about f (i), i.e., impose extra constraints, by
asking agent i to compare two coalitions. We believe that these assumptions correspond
to many real-world scenarios.

We make the following contributions. First, in Section 2, we propose our model:
the multi-criteria coalition formation game (MC2FG). We prove that while for single-
objective coalition formations individually stable partitions exist, this is not always the
case for MC2FGs (Section 3). Therefore, we define a new heuristic search algorithm
called local stability search (LSS) to investigate whether we can find stable partitions
in practice (Section 4). We test this on random MC2FGs, as well as a class of MC2FGs
we call Author × Author, inspired on forming teams of scientists to work together.
We show empirically that it is possible to find individually stable, and sometimes even
Nash-stable, partitions. Furthermore, we show that it is possible limit the number of
questions we need to ask to an agent to a number that is likely to be feasible to ask from
human decision makers (3.7 questions on average for individually stable partitions in
2-criteria MC2FGs, and 10.6 questions in 9-criteria MC2FGs). We therefore conclude
that this type of model, with individual utility functions but public quality metrics, is a
promising area that warrants further research.

2 Our Model

For k ∈ N, let [k] = {1, 2, . . . , k}. We start by defining multi-criterion coalition forma-
tion games.

Definition 1. A multi-criteria coalition formation game
(MC2FG) is a triple (N, q, (f (i))i∈N ) where N = [n] is a finite set of players, q :
2N → Rm is a multi-valued set function that represents the quality qk(S) of a subset
S for each criterion k ∈ [m], and each f (i) : Rm → R is a private utility function for



each player i ∈ N . We assume that each f (i) is monotone, namely, f (i)(x) > f (i)(y)
whenever x > y.

Throughout the paper, we assume that q(∅) = 0. We refer the subsets of N as
coalitions. We let Ni denote the collection of all possible coalitions containing i.

Preference relations derived from scalarisations can be naturally defined as follows.
Let i ∈ N and coalitions S, T ∈ Ni. We say that player i weakly prefers S to T
(denoted by S �f(i) T ) if f (i)(q(S)) ≥ f (i)(q(T )); player i strictly prefers S to T
(denoted by S �f(i) T ) if f (i)(q(S)) > f (i)(q(T )); player i is indifferent between S
and T (denoted by S ∼f(i) T ) if f (i)(q(S)) = f (i)(q(T )).

A MC2FG (N, q, (f (i))i∈N ) is said to be a single-criterion coalition formation
game if forming a coalition derives a single non-transferable value (e.g., the expected
number of citations for authors working together on a paper), and all players rank coali-
tions simply according to these values, irrespective of their scalarisation functions. We
use the notation (N, q) to denote a single-criterion coalition formation game.

We say that f : Rm → R is a linear scalarisation function if there exists a non-
negative vector w ∈ Rm

+ such that
∑m

k=1 wk = 1 and f(x) = w · x =
∑m

k=1 wkxk
for any x ∈ Rm. We use the notation (N, q, (w(i))i∈N ) to denote a MC2FG with
scalarisation vectors (w(i))i∈N . In this paper, we focus on linear scalarisations as a
model for user utility.
Solution Concepts An outcome of a MC2FG is a partition π of players into disjoint
coalitions. Given a partition π of N and a player i ∈ N , let π(i) denote the unique
coalition in π that contains i. We adapt stability concepts in hedonic games [3, 4] as
follows. A partition π of N is said to be individually rational if no player strictly prefer
staying alone to their own coalitions, i.e., each player i ∈ N weakly prefers π(i) to {i}.
A coalition S ⊆ N blocks a partition π of N if every player in i ∈ S strictly prefers S
to π(i).

Definition 2. A partition π of N is said to be core stable (CR) if no coalition S ⊆ N
where S 6= ∅ blocks π.

Next, we will introduce stability concepts that are immune to deviations by individ-
ual players. Consider a player i ∈ N and a pair of coalitions S 6∈ Ni and T ∈ Ni. A
player i wants to deviate from T to S if i prefers S ∪ {i} to T . A player j ∈ S accepts
a deviation of i to S if j does not possibly prefers S ∪ {i} to S.

Definition 3. A deviation of i from T to S is

– an NS-deviation if i wants to deviate from T to S.
– an IS-deviation if it is an NS-deviation and all players in S accept it.

Definition 4. A partition π of N is called Nash stable (NS) (respectively, individually
stable (IS)) if no player i ∈ N has an NS-deviation (respectively, an IS-deviation) from
π(i) to another coalition S ∈ π or to ∅.

The easier players can deviate, the more stringent the corresponding solution con-
cept is; thus, any Nash stable partition is individually stable. Similarly to hedonic set-
tings [3, 4], stable partitions may not necessarily exist as can be seen in the following
example.



Example 1. Consider three researchers who can potentially form a research team and
write a paper together. Any pair of researchers can produce some positive correlations,
whereas the other coalitions produce nothing. One can formulate this scenario as a
MC2FG (N, q, (w(i))i∈N ) as follows. The player set is N = {1, 2, 3}, and q : 2N →
R3 is given by

q({1}) = q({2}) = q({3}) = (0, 0, 0)>,

q({1, 2})=(2, 1, 1)>, q({2, 3})=(1, 2, 1)>, q({1, 3})=(1, 1, 2)>,

q({1, 2, 3}) = (−1,−1,−1)>.

The scalarisation functions are given by w(1) = (1, 0, 0)> w(2) = (0, 1, 0)>, and
w(3) = (0, 0, 1)>. The resulting preference profile is as follows:

1 : {1, 2} �w(1) {1, 3} �w(1) {1} �w(1) {1, 2, 3},
2 : {2, 3} �w(2) {1, 2} �w(2) {2} �w(2) {1, 2, 3},
3 : {1, 3} �w(3) {2, 3} �w(3) {3} �w(3) {1, 2, 3}.

This game admits four individually rational partitions: three partitions that consists of
a singleton and a pair of the others, π1 = {{1}, {2, 3}}, π2 = {{2}, {1, 3}}, π3 =
{{1}, {2, 3}}, and all the singleton partition π4 = {{1}, {2}, {3}}. It is not difficult to
see that none of them is a core stable partition or an individually stable partition.

3 Existence of stable outcomes

As we have seen in the previous section, stable outcomes can be empty in general.
Nonetheless, it turns out that for single-criterion coalition formation games core sta-
bility and individual stability can be simultaneously achieved; one can find such an
outcome by detecting a sequence of undominated coalitions. A similar construction can
be found in [12] for dichotomous hedonic games.

Theorem 1. Every single-criterion coalition formation game admits a partition that is
both core and individually stable.

Proof. We iteratively find a maximal coalition S ⊆ N of the highest quality q(S), and
add S to π. Then, the resulting partition π is both core and individually stable. Observe
first that π is core stable, since if there exists a blocking coalition T ⊆ N , T would be
added to π before any S ∈ π such that S ∩ T 6= ∅. Second, π is individually stable.
Notice that no player wants to deviate to a later formed coalition. Moreover, if there
exists a player who can IS-deviate to a former formed coalition, this would contradict
the maximality of the S.

Due to Theorem 1, if all players have the same scalarisation function, there always
exists a partition that is simultaneously core and individually stable.

Corollary 1. Every multi-criteria coalition formation game admits a partition that is
both core and individually stable if all the scalarisation functions are the same.



Proof. Given the scalarisation function f : Rm → R, define a single-criterion coalition
formation game (N, q′) where q′(S) = f(q(S)) for each S ⊆ 2N . It is not difficult
to see that core and individually stable partitions of the resulting game are also stable
partitions of the original game.

We note that Nash stable outcomes may not exist even in single-criterion cases.
Consider for instance the two-player game (N, q) where q({1}) > q({1, 2}) > q({2});
if player 1 is alone, then player 2 would deviate to his coalition, which would again
cause the deviation by player 1.

Now, it is natural to wonder what can be said if we have “similar” scalarisation
functions. Even in such cases, however, there always exists a MC2FG whose stable
partitions are empty.

Theorem 2. For any positive integer n and for any 0 < ε < 1
2 , there exists a MC2FG

(N, q, {w(i)}i∈N ) which admits neither a core nor an individually stable partition,
where the number of players |N | = n, the number of objectives m = 2, and |w(i)

k −
w

(j)
k | ≤ ε for any i, j ∈ N and any k ∈ [m].

Proof. Take any 0 < ε < 1
2 . We choose ε′ such that 0 < ε′ < ε. Let c = 1+ε−ε′

2+ε−ε′ .
Observe that min{c, 1 − ε} > 1

2 and hence there exists α ∈ R such that 1
2 < α <

min{c, 1− ε}.
Now we construct a two-criteria coalition formation game where N = [n],

w
(1)
1 = α+ ε, w

(1)
2 = 1− α− ε,

w
(i)
1 = w

(j)
1 = α, and w(i)

2 = w
(i)
2 = 1− α, for all i ∈ N \ {i},

and q : 2N → R2 is given as follows:

q({i}) = (0, 0) for all i ∈ N,
q({1, 2}) = (1, 0), q({2, 3}) = (1, ε′), q({3, 1}) = (0, 1 + ε),

q({1, 2, 3}) = (−1,−1)
q(S) = (−1,−1) for all S 6⊆ {1, 2, 3} : |S| 6= 1.

Clearly, all players except for 1, 2, 3 strictly prefer being alone to being together with
somebody; hence, these players stay alone at any individually rational partition. The
players 1, 2, 3 strictly prefer pairs to their singletons, and strictly prefers the singletons
to the coalition {1, 2, 3} and any coalition S 6⊆ {1, 2, 3}. Thus, for any individually
rational partition π and for all i = 1, 2, 3, we have π(i) ( {1, 2, 3}. Also, it is not diffi-
cult to see that {2, 3} �w(2) {1, 2} as the vector q({2, 3}) = (1, ε′) Pareto-dominates
q({1, 2}) = (1, 0). Further, we have that {3, 1} �w(3) {2, 3} and {1, 2} �w(1) {3, 1},
since

w
(3)
1 q1({1,3}) +w(3)

2 q2({1,3})−w(3)
1 q1({2,3})−w(3)

2 q2({2,3})
= (1+ε−ε′)− α · (2+ε−ε′) > (1+ε−ε′)−c · (2+ε−ε′) = 0,



and

w
(1)
1 q1({1,2}) +w(1)

2 q2({1,2})−w(1)
1 q1({3,1})−w(1)

2 q2({3,1})

= α · (2 + ε) + (ε2 + ε− 1) >
1

2
· (2 + ε) + (ε2 + ε− 1) > 0.

The resulting preferences restricted to {1, 2, 3} are the same as in Example 1, meaning
that the instance has neither a core nor an individually stable partition.

Another implication of Theorem 2 is that even if the number of objectives is much
smaller than the number of players there exists a two-criteria MC2FG which does not
admit a stable partition.

4 Algorithms

Because neither a Nash nor an individually stable partition necessarily exists in an
MC2FG, there are naturally no algorithms that can guarantee a Nash or individually
stable partition as an outcome. However, because we know (Theorem 1 and Corollary
1) that if there is only one objective or if all the agents have the same scalarisation
function, individually stable partitions do exist, we expect the chances of stable parti-
tions existing in a random MC2FG to increase as the number of objectives decreases.
In order to test this hypothesis, we devise heuristic algorithms for constructing stable
partitions. Here, we do not focus on the core since the computational complexity for
checking whether a partition satisfies core stability is much more demanding.

We aim for our algorithms to minimise the number of questions that need to be asked
to each individual agent. This is essential, as asking an agent for her preferences may
correspond to asking humans for their preferences. Asking such questions to people can
be time-consuming — both in terms of time required by the humans, and the time the
system needs to wait until an answer is received — and experienced as hindrance by
these humans.

We define a so-called local search (LS), or best-response, algorithm for MC2FGs
called local stability search (LSS). LSS starts from a partition, π. At each time-step, the
algorithm selects an agent, i, computes whether there exists a deviation (Definition 3)
from π(i) to any other coalition T ∈ π \ π(i), and if it does performs the deviation.
When there are no more deviations for any agent, the partition is stable.

A key aspect of LSS is that at any given iteration, LSS may not be able to decide
whether an agent prefers an alternative coalition over another before explicitly asking
that agent. For example, imagine that LSS is currently considering a partition π, and
knows nothing about the w(i) of an agent, i. When considering whether i wants to
deviate from π(i) to say, a coalition T ∈ π, we must know whether, w(i) · q(π(i)) <
w(i) · q(T ∪ {i}), where “·” denotes the inner product. When for example, q(π(i)) =
(0, 3) and q(T ∪ {i}) = (1, 4), i will always prefer to deviate, as there is no w(i) for
which w(i) ·q(π(i)) ≥ w(i) ·q(T∪{i}). However, if q(π(i)) = (2, 3) and q(T∪{i}) =
(1, 4), there are possible values for w(i) that would make i prefer π(i). In such cases
we have to elicit the preferences of agent i with respect to these two vectors.

LSS is provided in Algorithm 1 and is parameterised by the agents and quality
function of an MC2FG, i.e., N and q. However, we assume that we have no direct



Algorithm 1: LSS(N, q, π, checkDeviation)
Input: A MC2FG1 C ← a set of simplex constraints on w(i), C(i), for each i ∈ N

2 stable← false

3 while ¬stable ∨ ¬timeout() do
4 stable← true

5 foreach i ∈ N do
6 foreach T ∈ (π \ π(i)) that i could join do
7 if (T ∪ {i} �P T ) ∧ (T ∪ {i} �P π(i)) then
8 π ← (π \ {π(i), T}) ∪ {π(i) \ {i}, T ∪ {i}}
9 stable← false

10 end
11 end
12 end
13 if stable then
14 foreach i ∈ N do
15 // for all agents (returned in a random order), check for and perform

deviations:
16 foreach T ∈ (π \ π(i)) that i could join do
17 possibleDeviation← checkDeviation(i, π(i), T, C)
18 if possibleDeviation then
19 π ← (π \ {π(i), T}) ∪ {π(i) \ {i}, T ∪ {i}}
20 stable← false

21 continue while-loop;
22 end
23 end
24 end
25 end
26 end
27 if stable then
28 return π
29 end
30 else
31 return No stable partitioning was found
32 end

access to f (i) (i.e., w(i)). In fact, LSS only knows that each w(i) adheres to the simplex
constraints, i.e.,

∑
x w

(i)
x = 1 and ∀x : 0 ≤ w

(i)
x ≤ 1. Therefore, it creates a set of sets

of constraints on line 1 containing the simplex constraints for each w(i).
LSS is also parameterised by a starting coalition π, which can e.g., be initialised

randomly. Finally LSS is parameterised by a function checkDeviation. This func-
tion checks whether a deviation exists, and thus requires different implementations for
NS-deviations (Algorithm 2), and IS-deviations (Algorithm 3). It is also this function
that will elicit preferences from the agents. We do not define an algorithm for CIS-
deviations, but will comment on where the algorithm would need to differ in the case
of CIS-deviations.



In the main loop (line 3-26), LSS iterates over all agents two times, and checks
whether it has a deviation it wants to perform (lines 7 and 17). The first time LSS loops
over all agents, it checks whether i can deviate to a coalition T for which q(T ∪ {i})
Pareto-dominates, i.e., is better or equal in all criteria and better in at least one criterion
than, both q(T ) and q(π(i)); if that is the case, both i and the agents in T will prefer
that definition, will thus allow both an NS- and IS-deviation.1 If such a deviation exists,
it is performed (line 8). The second time LSS loops over the agents, it checks for each
agent i whether there is an NS-deviation or an IS-deviation using an NS- or IS-specific
subroutine. If such a deviation exists, the deviation is performed (line 19). When none
of the agents have a deviation LSS terminates.

Algorithm 2: checkNSDeviation(i, π(i), T, C(i))
Input: A possible NS-deviation1 maxDiffNew← maxw(i) w(i) · (q(T ∪ {i})− q(π(i))) s.t. C(i)

2 maxDiffOld← maxw(i) w(i) · (q(π(i))− q(T ∪ {i})) s.t. C(i)
3 if maxDiffOld ≥ 0 ∧ maxDiffNew > 0 then
4 // not enough information, ask agent i:

prefNew← askAgent(T ∪ {i} �f(i) π(i))
5 if prefNew then
6 C(i) ← C(i) ∪ {w(i) · (q(T ∪ {i})− q(π(i))) > 0}
7 return true

8 end
9 else

10 C(i) ← C(i) ∪ {w(i) · (q(T ∪ {i})− q(π(i))) ≤ 0}
11 return false

12 end
13 end
14 else
15 return maxDiffNew > maxDiffOld

16 end

In order to check whether an agent has a deviation, we need a specific algorithm for
each type of deviation. For NS-deviations, the algorithm is given in Algorithm 2. The
algorithm is called with an agent i that may want to deviate from π(i) to T , given the
known constraints on w(i), C(i). On the first two lines, linear programs (LPs) are run to
calculate the maximal possible difference in utility w(i) · q(S) if the new coalition, i.e.,
S = T ∪ {i}, is preferred over the old coalition, i.e., π(i), resp. if the old coalition is
preferred over the new one, given the known constraints C(i). When both these values
are positive, it is both possible that the old coalition has a higher utility for i and that
the new coalition has a higher utility for i. In other words, LSS cannot determine which
coalition is preferred by i and it must thus ask the agent directly (line 3). We denote this
asking the agent as askAgent(T ∪ {i} �f(i) π(i)). We assume the agent will always

1 Note that this is not sufficient for CIS-deviation. If we would want to check for CIS-deviations
we should also have that q(π(i) \ {i}) �P q(π(i)).



answer truthfully with either true or false. When an agent answers a comparison
question, for example, it states that askAgent((2, 3) �f(i) (1, 4)) → true, this im-
poses a constraint on w(i). In this case, it imposes the constraint w(i) ·(2−1, 3−4) > 0.
In general, the imposed constraints are:

q(S) �f(i) q(T ) =⇒ w(i) · (q(S)− q(T )) > 0, and

¬(q(S) �f(i) q(T )) =⇒ w(i) · (q(S)− q(T )) ≤ 0.

Therefore, by eliciting such constraints through asking agents for comparisons between
quality vectors, LSS can learn the relevant preference information of the agents. LSS
adds the constraints to C(i) (line 6 and 10).

Algorithm 3: checkISDeviation(i, π(i), T, C)
Input: A possible IS-deviation1 nsDeviation← checkNSDeviation(i, π(i), T, C(i))

2 if nsDeviation then
3 foreach j ∈ T do
4 maxDiffNew← maxw(j) w(j) ·(q(T∪{i})−q(T )) s.t. C(j)

5 maxDiffOld← maxw(j) w(j) ·(q(T )−q(T∪{i})) s.t. C(j)
6 if maxDiffOld > 0 ∧ maxDiffNew ≥ 0 then
7 //not enough information, ask agent j:
8 prefOld← askAgent(T �f(j) T ∪ {i})
9 if prefOld then

10 C(j) ← C(j) ∪ {w(j) · (q(T )− q(T ∪ {i}) > 0}
11 return false

12 end
13 else
14 C(j) ← C(j) ∪ {w(j) · (q(T )− q(T ∪ {i}) ≤ 0}
15 end
16 end
17 else if maxDiffOld > 0 then
18 return false

19 end
20 end
21 return true

22 end
23 else
24 return false

25 end

When LSS is run with checkNSDeviation (Algorithm 2) as checkDeviation, it
will try to find a Nash-stable partitioning. However, we may want to consider weaker
stability concepts; for individual stability, we need to use checkISDeviation (Algo-
rithm 3) instead. Because individual stability imposes extra constraints on deviations
over Nash-stability, checkISDeviation first calls checkNSDeviation (line 1), to



check whether i wants to deviate. Then, if that is indeed the case, it loops over all
the agents of the coalition i wants to deviate to, T , to check whether none of these
agents lose utility by i joining T (line 3–20). This is done using similar LPs as for the
agent that wants to deviate (line 4 and 5). Again, the algorithm might not be able to
determine this from the current constraints, and thus elicits comparisons from the ap-
propriate agent. Note that when one agent in T loses utility, the checkISDeviation

terminates immediately (line 11). This is because we want to minimise the number of
questions asked.

We do not define an explicit algorithm for CIS-deviations; however, it can be de-
vised by adding another loop over all the agents other than i in the coalition that i
intends to leave, π(i), and check whether any of these agents would lose utility. If that
is the case, the deviation is not allowed.

Finally, we note that on line 6 and 16 of Algorithm 1 (LSS), we may not allow
all T ∈ π \ π(i) for i to deviate too. For example, we may impose social network
constraints [8], i.e., that the agents are embedded in a graph representing which agents
know each other, and only allow coalitions that are connected subgraphs.

5 Experiments

In this section we empirically test the LSS algorithm for both Nash stability and in-
dividual stability. Futhermore, we test whether it helps to use a “smart initialisation
partition”, i.e., one such that no agent, i, can deviate such that the coalition it deviates
to, T ∪ {i} Pareto-dominates both its former coalition, π(i), and T . We refer to this
as undominated initialisation. Alternatively, we do singleton initialisation, i.e., initially
each agent is in a separate coalition.

As a baseline, we compare to an algorithm does not employ linear programs, but
only tests for Pareto-dominance instead. I.e., Algorithm 1 is the same, but in the checkDeviation
subroutines (Algorithms 2 and 3) the linear programming steps (e.g., line 1–2 in Algo-
rithm 2) are skipped, and instead the agent is always asked for a comparison. We refer
to this baseline algorithm as always ask stability search (AASS).

We implemented all algorithms in Python 3, making use of (the default solver of) the
PuLP library (version 1.6.1) for linear programs. We ran the experiments on a MacBook
Pro, with a 2.9 GHz Intel Core i5 processor and 16GB memory, running macOS Sierra
(version 10.12.1).

5.1 Test problems

In order to test the performance of LSS and AASS we make use of two test classes of
MC2FGs. A Random instance, is one in which every possible coalition S ⊆ N has a
randomly drawn quality vector q(S), from a uniform distribution on the unit hypercube
of m dimensions (i.e., between the origin, 0, and the vector containing only ones, 1).
The scalarisation function for each agent, i, is linear, with a weight vector w(i) that is
drawn independently from a uniform distribution on the weight simplex.

The second problem, Author × Author, is inspired on the example of scientists
writing papers together. Imagine we have n authors (with scalarisation functions gen-
erated in the same way as for the Random instances) whom will be advised to work to-
gether in coalitions by a recommender system. This system can interact with the agents,



by asking them whether they would prefer to be in one of two proposed coalitions. For
each coalition, the recommender system presents the expected quality q in m dimen-
sions (e.g., expected impact and expected novelty when writing a paper together), of
the coalitions to the agents. It is therefore vitally important that the number of ques-
tions posed to the agents is minimised, as interaction with human decision makers will
be the slowest part of the process. The quality vectors are formed by summing over a
randomly drawn agent quality vector vi for each agent (containing values between 1
and 4 drawn independently from a uniform distribution), and subtracting a group size
penalty:

q(S) = (−2|S|−1)1+
∑
i∈S

vi.

Because of the group size penalty, stable partitions will typically consist of coalitions
of 3 or 4 agents. Furthermore, because of this structure, we have empirically found that
Nash stable partitions typically do exist in Author× Author instances.

5.2 Random

To test whether we can find stable partitions with LSS with or without smart initialisa-
tion, we first run these algorithms on Random MC2FG instances, as defined above. Note
that we do not test AASS separately, as they have the same number of iterations; the
only difference between the two is when they ask the agents to compare quality vectors.

In Figure 1, proportion of instances (of 20 in total) for which LSS found a Nash or
individually stable partition within 1000 iterations for varying numbers of agents (left)
and objectives (right). We observe that for the individual stability criterion, stable par-
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Fig. 1. The proportion of instances for which a stable partition was found by LSS using the Nash
stability criterion and Individual stability criterion within 1000 iterations as a function of (left)
the number of agents in 2-objective Random instances, and (right) the number of objectives in
20-agent Random instances.

titions were always found (empirically), while for Nash stability this is not always the
case. This is according to expectation, as it is more difficult to reach a Nash stable parti-
tion (as Nash stability is a stronger stability concept than individual stability). Further-



more, we observe that the proportion of stable partitions found goes down as a function
of the number of agents (as expected), but does not change significantly as a function
of the number of objectives. This is surprising as more objectives make the likelihood
of agents disagreeing more likely. Finally, we observe that using undominated initial-
isation does not significantly change the probability of finding a stable partition. We
thus conclude that MC2FGs become significantly harder as the number of agents in the
problem increases.

Secondly, we measure how many questions we need to ask per agent in order to
find stable partitions. This is important, as this may correspond to asking humans for
their preferences, which can be time-consuming and experienced as hindrance by these
humans. Because we have not always found Nash stable partitions, we focus on indi-
vidual stability only for the Random MC2FG instances. From Figure 2 (left) we observe
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Fig. 2. The average number of questions asked per agent until an IS-stable partitioning was found
as a function of (left) the number of agents in 2-objective Random instances, and (right) the
number of objectives in 20-agent Random instances.

that for LSS leads to significantly less questions asked per agents than AASS across
all numbers of agents. The highest number of questions per agents (at 40 agents) was
3.44 for LSS and 19.22 for AASS (both with singleton initialisation). LSS scales better
in the number of agents than AASS; when we fit a line for the number of questions
per agent as a function of the number of agents, we obtain a slope of 0.025 questions
per agent per additional agent for LSS, and a slope of 0.29 for AASS. There was no
significant difference between singleton and undominated initialisation.

LSS needs consistently less questions per agent than AASS across different num-
bers of objectives (Figure 2 (right)). However, the difference in slope, i.e., the number
of questions per agent per additional objective is not significant (2.78 for LSS, ver-
sus 2.88 for AASS). Again there was no significant difference between singleton and
undominated initialisations.

We conclude that LSS can be used to find stable partitions in Random MC2FG
instances, but that Nash stable partitions are harder to find than individually stable par-
titions. Furthermore, LSS can significantly decrease the number of comparisons that
need to be made by the agents when looking for individually stable partitions, and LSS



scales better in the number of agents than a more naive question asking scheme (i.e.,
AASS).

5.3 Author× Author
In order to test the performance of LSS with respect to AASS, we test the algorithms
on our real-world inspired Author × Author problem. Important features of this
problem is that stable coalitions typically consist of 3- or 4-agent coalitions, and that
stable partitions typically exist. Indeed, we did not come across any instance in our
experiments for which a stable partition was not found. This latter feature provides us
with the opportunity to study the number of questions asked until a stable partition is
reached, without having to worry about whether a stable partition exists.
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Fig. 3. The average number of questions asked per agent until an individual or Nash stable parti-
tioning was found as a function of (left) the number of agents in 2-objective Author × Author

instances, and (right) the number of objectives in 20-agent Author× Author instances.

We compare LSS to AASS, and finding individually stable partitions to finding
Nash stable partitions on Author × Author instances. For all Author × Author in-
stances Nash and individually stable partitions were found within 1000 iterations of the
main loop of LSS/AASS (Algorithm 1, lines 3–26). While only singleton initialisation
is displayed in Figure 3, we also compared to undominated initialisation, but like for
Random instances found no significant difference.

When comparing finding Nash stable partitions to individually stable partitions for
varying numbers of agents (Figure 3 (left)), we observe that for AASS performs sig-
nificantly worse for individual stability than for Nash stability in terms of the number
of questions, there is no significant difference between the number of questions until
a Nash stable partition and an individually stable partition is found by LSS. This is a
surprising result, as it is typically much harder to find Nash stable partitions (as can be
seen from the AASS curve for the number of questions asked), and it does take more
iterations to find a Nash stable partition than an individually stable partition (on aver-
age 253 versus 144 iterations for 90 agent instances). Furthermore, both for individual
stability and for Nash stability, LSS scales better than AASS in terms of the number of
questions per agent.



For 80-agent 2-objective Author×Author instances LSS required 3.7 questions on
average per agent. When we consider the example use case of matching small groups
of authors for an event, asking authors to compare 3 or 4 groups is probably feasible.
On the other hand, if we employ a more naive question-asking scheme, i.e., AASS, the
numbers are 40 for individual stability, and 154, which probably would not be feasible.
We thus conclude that LSS can keep the number of questions that need to be asked to
agents can be kept at feasible numbers even for higher number of agents.

When we compare Author × Author instances of 20 agents for varying numbers
of objectives (Figure 3 (right)), LSS also outperforms AASS by a large margin for
both Nash stability and individual stability. For higher objectives, LSS using individual
stability is slightly more efficient than LSS using Nash stability. For 9 objectives, 20
instances required 10.6 questions per agents for finding an individually stable partition
with LSS, and 14.4 for Nash-stable finding partitions. We conclude that for this real-
world inspired problem, LSS can reduce the number of questions that need to be asked
to agents can be kept at reasonable numbers, even for higher numbers of objectives.

6 Discussion

In this paper, we proposed the multi-criteria coalition formation game (MC2FG) for
forming stable partitions while having limited access to the preferences over differ-
ent possible coalitions for each agent. This is important as agents may either not want
to divulge their complete preference profiles for social or privacy reasons, but more
importantly might not even be able to specify their utilities a priori to begin with. In-
stead, MC2FGs model the quality of coalitions as vectors containing different agent-
independent metrics corresponding to different objectives that agents may have. How-
ever, the agents may have different preferences with respect to these objectives. To
model this, in MC2FGs each agent, i, has a private utility function, f (i), that takes the
multi-criterion quality vector of a coalition, and produces a scalar utility. Because these
functions are private, we cannot use these to check whether a proposed coalition is sta-
ble. However, some a priori assumptions about f (i) can be made, and we can increase
our knowledge about f (i), by asking agent i to compare two coalitions. In this paper we
made the a priori assumption that each f (i) is a linear function.

Because (Nash and individually) stable partitions need not exist, we proposed a
local search algorithm that we call local stability search (LSS) to find stable partitions
where possible. We showed empirically that LSS is able to discover stable partitions. By
exploiting the additional knowledge gained by asking agents for comparisons between
quality vectors for different coalitions (via LPs), we show empirically that the number
of comparisons that need to be asked from agents can be kept to a minimum.

Because we have shown that stable partitions need not exist for MC2FGs in general,
in future research we will aim to look into subclasses of MC2FGs in stable partitions
are guaranteed to exist. Especially, we aim to find realistic subclasses corresponding
to use cases like the Author × Author problem described in this paper. Furthermore,
we aim to improve the Author× Author problem itself, by using studies on scientific
cooperation [1, 9] to redefine the utility functions.

More generally, we have applied a utility-based approach to multi-objective multi-
agent decision making. In our model, all agents in a coalition share a value vector,



but may have different private utilities w.r.t. this value vector, as their preferences with
respect to the objectives may vary. We believe that this kind of model is realistic for
many real-world decision-making problems in which there are heterogeneous agents,
e.g., colleagues in different phases of their careers cooperating in a project. We aim to
investigate how this perspective can be applied to other multi-agent decision-making
models, such as (multi-objective) coordination graphs [6, 14], (cooperative) Bayesian
games [11] and (partially observable) stochastic games [7, 10].
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