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Figure 1: A battle in StarCraft.

Decision-theoretic control of multiple units in game AI [3, 5]
is a notoriously hard problem, because the size of the state and ac-
tion spaces are exponential in the number of agents, making it an
interesting testbed for decision theoretic learning algorithms. There
are two main approaches: a centralized and decentralized approach.
In the centralized approach, a higher authority governs all agents’
actions. However, this approach scales poorly because of the large
state and action spaces. In the decentralized approach, each agent
selects its own action independently. This has the advantage of re-
ducing the action space, and can even reduce the state space when
some features are not relevant for all agents. However, this comes
at the expense of losing optimality guarantees.

In this research, we use the BroodWar API1 for the real-time strategy (RTS) game StarCraft (see Figure
1) to micro-manage multiple units in a battle simulation with game AI. More specifically, our problem is
a partially observable stochastic game (POSG) consisting of two separate, homogeneous groups of units
in a zero-sum game. Each group’s objective is to defeat the other group in battle. The field of battle is
partially obscured to the units, as each agent has a visual range. There is perfect cost-free communication
between agents on the same team, but because the field is large the team as a whole cannot observe the whole
battlefield. We use the decentralized approach and a novel state representation, and since POSGs are NEXP-
complete [1] we need to make simplifying assumptions to keep the problem tractable. We apply model-
based reinforcement learning, using Monte-Carlo sampling to learn the transition and reward functions,
which leads to good coordination and strong performance.

1 Approach
We take the following steps to simplify the full decision problem. First, we note that the partial observability
of the problem is not very significant with respect to the local level at which an agent operates, enabling us
to discard the partial observability. Secondly, each agent only models all other visible units, and sees them
as part of the environment. Each agent then uses a Markov Decision Process (MDP) [4], to approximate its
own decision problem and selects its actions independently.

An MDP is a tuple < S,A, T,R >, where S is the set of states representing all possible situations that
an agent can face, A the set of actions an agent can take, T : S ×A×S → [0, 1] the transition function that
gives the probability of a next state given a state and an action, and R : S × A → < the expected reward
for taking an action in a given state. At the beginning, the agents know S and A but not T and R. We use a
model-based approach [4], i.e., the agents learn T and R explicitly and then plan using the learned model.

Following previous work [2, 5], the actions available to each agent are ‘attack’ and ‘escape’. The ‘attack’
action either moves towards enemies when the agent is not able to shoot any of them, or shoots the weakest
enemy unit currently in range. The ‘escape’ action moves the agent in such a way to keep it within range of

1This API is known from several competitions (SCMAI: http://scmai.hackcraft.sk and CIG: http://eldar.
mathstat.uoguelph.ca/dashlock/CIG2013/) that focus on the improvement of game AI.

http://youtu.be/TrKMBIR82Qw
http://scmai.hackcraft.sk
http://eldar.mathstat.uoguelph.ca/dashlock/CIG2013/
http://eldar.mathstat.uoguelph.ca/dashlock/CIG2013/


its friends, but away from enemies and obstacles. A state transition happens when the unit either moves one
tile on the game map, or shoots a single hit towards an enemy.

States are represented as a feature vector containing ‘weapon cooldown’1, which represents if the weapon
of the unit is currently in cooldown, ‘health’1, a discretized value representing the remaining health in one
of four different intervals of 25% of the total health each, ‘target available’, a boolean value that repre-
sents whether the unit is currently able to target and attack an enemy, ‘friend range’, a boolean value that
represents whether the unit is currently in range of a friendly unit, and ‘enemy range’, a triplet value that
represents whether the unit is in range of an enemy, whether it is targeted by an enemy or neither.

As mentioned earlier, the transition and reward functions are unknown. The transition function is un-
known because it depends on the other agents. Rewards are connected to game events, like dealing or
receiving damage, but those are not trivially associated with states and actions, making the reward function
unknown as well. We apply Monte Carlo sampling to estimate the transition and reward functions using a
random policy for our agents, and the standard game AI for the enemy agents. The resulting MDP model is
then used by the agents to determine their policies, using the LP planning method from the MDPToolbox2.

Bots Wins Draws Losses
AA 0 0 1000
JB 50 0 950
MC JB 303 5 692
MC MDP 1000 0 0

Table 1: Outcomes of 1000 games of
two dragoons (range) versus one ultra-
lisk (melee) for different policies.

We compare our approach with previous ranged vs. melee results3

in Table 1 (following [2]). A trivial always attacking (AA) strategy al-
ways loses. Jackson and Bogert’s dec-POMDP approach (JB) [2] wins
sometimes. Adding Monte-Carlo sampling to estimate transitions and
rewards to Jackson and Bogert’s approach (MC JB) greatly improves
performance. Finally, using our MDP approach with Monte-Carlo
sampling wins all the time. We therefore conclude that a model-based
approach using Monte-Carlo sampling can greatly improve game AI.
Furthermore, approximating the problem with an MDP for each agent
with the appropriate state space can lead to strong play.

2 Demonstration
In this demonstration we show what decision theoretic control can achieve in RTS games. We use sim-
ple units from the game, which requires minimal input to demonstrate the project’s features. First, our
AI plays against the default StarCraft AI, a video of which can be found here: http://youtu.be/
TrKMBIR82Qw. Secondly, the visitors get challenged to an interactive game, where they can either play
against our AI or against the default AI. The demonstration requires two computers containing Windows
(XP/7), with StarCraft Broodwar 1.16 and Broodwar API 4.0.0 installed. The agents were developed by Eu-
genio Bargiacchi and Camiel Verschoor as a “profile project” for the track Intelligent Systems of the Master
AI at the University of Amsterdam, using the BWAPI 4.0.0 Beta library, C++11 and MS Visual Studio 2010.
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