Reinforcement Learning in Sequential Settings

- Agent does not have a (complete) model of the environment

- Agent learns about environment through interaction

- Last time: reinforcement learning in multi-armed bandits
 - Stateless
 - Looking for the optimal action / arm
Reinforcement Learning: MDPs

![Diagram of reinforcement learning process: an agent (robot) starts in state s, takes action a, transitions to state s', receives reward r.]
Reinforcement Learning Settings

- Online / Offline
 - Online:
 - Offline:

- On-policy / Off-policy
 - On-policy:
 - Off-policy:
Reinforcement Learning Settings

- **Online / Offline**
 - **Online**: we care about the accrued rewards during learning
 - **Offline**: we only care about the quality of the policy after learning

- **On-policy / Off-policy**
 - **On-policy**:
 - **Off-policy**:
Reinforcement Learning Settings

- **Online / Offline**
 - **Online**: we care about the accrued rewards during learning
 - **Offline**: we only care about the quality of the policy after learning

- **On-policy / Off-policy**
 - **On-policy**: we evaluate and/or optimise the value of the policy that we are executing
 - **Off-policy**: we evaluate and/or optimise the value of a different (possibly better) policy
Reinforcement Learning Choices

- **Representation choices**
 - explicitly learn a model of the environment?
 (today: no)
 - explicitly represent the policy the agent is learning?
 (today: no)
 - explicitly represent a state-based value function, $V(s)$ and/or $Q(s,a)$?
 (today: yes)
Reinforcement Learning Choices

- Bootstrapping choices
 - Standard Bellman backups (bootstrap from value of next state)
 \[
 V^\pi(s_t) = E[r_t + \gamma V^\pi(s_{t+1})|\pi]
 \]
 - Deeper backups (eligibility traces)
 \[
 V^\pi(s_t) = E[r_t + \gamma r_{t+1} + \ldots + \gamma^{n-1} r_{t+n-1} + \gamma^n V^\pi(s_{t+n})|\pi]
 \]
 - Or just use the entire episode (Monte Carlo methods)
 \[
 V^\pi(s_t) = E[r_t + \gamma r_{t+1} + \ldots + \gamma^{t_{end}-t} r_{t_{end}}|\pi]
 \]
Monte-Carlo methods

- Monte-Carlo (MC) methods are statistical techniques for estimating properties of complex systems via random sampling
 - Wide range of applications, across sciences (math, physics, biology, etc.)
 - “Randomization, bootstrap and Monte Carlo methods in biology” by B.F.J. Manly cited over 8000 times

- MC for RL: finding optimal policies without a priori models of MDP by random *roll-outs* and estimating expected returns (i.e., the value)

- MC for RL learns from complete sample returns in episodic tasks: uses value functions but not Bellman equations
Monte-Carlo methods

- Monte-Carlo (MC) methods are statistical techniques for estimating properties of complex systems via random sampling.

- MC for RL: finding optimal policies without a priori models of MDP by random *roll-outs* and estimating expected returns (i.e., the value).
 - Model-free RL

- MC for RL learns from complete sample returns in episodic tasks: uses value functions but not Bellman equations.
 - No bootstrapping
Monte-Carlo policy evaluation

1. Policy evaluation

2. On-Policy learning

3. Off-Policy learning

4. Planning: Monte-Carlo Tree Search
Monte-Carlo policy evaluation

- Obtain V^π by doing roll-outs using π

- For each state s, average observed returns after visiting s

 - *Every-visit MC*: average returns for every time s is visited in an episode; if a state is visited x times in an episode, there are x data points for estimating $V^\pi(s)$

 - *First-visit MC*: average returns only for the first time s is visited in an episode; if a state is visited $x > 1$ times in an episode, there is one data point for estimating $V^\pi(s)$
First-visit Monte-Carlo policy evaluation

Initialize:
\[
\begin{align*}
\pi & \leftarrow \text{policy to be evaluated} \\
V & \leftarrow \text{an arbitrary state-value function} \\
Returns(s) & \leftarrow \text{an empty list, for all } s \in S
\end{align*}
\]

Repeat forever:
\[\begin{align*}
(a) & \quad \text{Generate an episode using } \pi \\
(b) & \quad \text{For each state } s \text{ appearing in the episode:} \\
& \quad R \leftarrow \text{return following the first occurrence of } s \\
& \quad \text{Append } R \text{ to } Returns(s) \\
& \quad V(s) \leftarrow \text{average}(Returns(s))
\end{align*}\]
Monte-Carlo policy evaluation

- Unlike dynamic programming policy evaluation, only one subsequent state at each state is taken into account per operation.

- Unlike dynamic programming and TD policy evaluation, the entire episode included: MC does not bootstrap.

- Computational and sample costs to estimate $V^\pi(s)$ for one s are independent of $|S|$.
From evaluation to optimisation: Q-values

- π^* cannot be derived from V^* without a model so learn Q^*

- Can learn Q^π by averaging returns obtained when following π after taking action a in state s

- Converges asymptotically if every (s, a)-pair is visited infinitely often

- Requires explicit exploration of actions not possible under π

Possible solutions:

- **Exploring starts**: every (s, a) has a non-zero probability of being the starting pair

- **Soft policies**: $\pi(s, a) > 0$ for all (s, a)
Optimising policies with Monte-Carlo

- Policy evaluation step: use MC methods
- Policy improvement step: $\pi(s) \leftarrow \arg \max_a Q(s, a)$
Monte-Carlo control with exploring starts

Initialize, for all $s \in S$, $a \in A(s)$:

- $Q(s, a) \leftarrow$ arbitrary
- $\pi(s) \leftarrow$ arbitrary
- $Returns(s, a) \leftarrow$ empty list

Repeat forever:

(a) Generate an episode using exploring starts and π
(b) For each pair s, a appearing in the episode:
 - $R \leftarrow$ return following the first occurrence of s, a
 - Append R to $Returns(s, a)$
 - $Q(s, a) \leftarrow$ average($Returns(s, a)$)
(c) For each s in the episode:
 - $\pi(s) \leftarrow \text{arg max}_a Q(s, a)$
On-policy Monte-Carlo control

- Avoid exploring starts, use ϵ-greedy policies:
 - Non-greedy actions: $\frac{\epsilon}{|A(s)|}$
 - Greedy action: $1 - \epsilon + \frac{\epsilon}{|A(s)|}$

- Policy improvement theorem: any ϵ-greedy policy w.r.t. to Q^π is an improvement over any ϵ-greedy policy π

- Converges to the best ϵ-greedy policy
On-policy Monte-Carlo control

Initialize, for all \(s \in S, a \in A(s) \):
\[
Q(s, a) \leftarrow \text{arbitrary} \\
\text{Returns}(s, a) \leftarrow \text{empty list} \\
\pi \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
\]

Repeat forever:
(a) Generate an episode using \(\pi \)
(b) For each pair \(s, a \) appearing in the episode:
\[
R \leftarrow \text{return following the first occurrence of } s, a \\
\text{Append } R \text{ to } \text{Returns}(s, a) \\
Q(s, a) \leftarrow \text{average}(\text{Returns}(s, a))
\]
(c) For each \(s \) in the episode:
\[
a^* \leftarrow \arg \max_a Q(s, a) \\
\text{For all } a \in A(s):
\]
\[
\pi(s, a) \leftarrow \begin{cases}
1 - \varepsilon + \varepsilon / |A(s)| & \text{if } a = a^* \\
\varepsilon / |A(s)| & \text{if } a \neq a^*
\end{cases}
\]
Off-policy Monte-Carlo control

- Evaluate an *estimation policy* using roll-outs from a *behaviour policy*

- Useful if behaviour policy cannot be changed

- Behaviour policy needs to explore sufficiently

- Allows estimating a deterministic policy while still exploring with behaviour policy

- Use *importance sampling* to re-weight roll-out returns from behaviour policy by the probabilities of them occurring under estimation policy
Importance sampling

- General technique from statistics

- Interested in $E_d[f(x)]$ where d is a target distribution over x

- Samples $f(x_1), f(x_2), \ldots, f(x_n)$ from source distribution d'

- Distributions d and d' are known but f is unknown
Importance sampling

- Distributions d and d' are known but f is unknown.

- Importance sampling is based on the following observation:

$$E_d[f(x)] = \sum_x f(x)d(x) = \sum_x f(x)\frac{d(x)}{d'(x)}d'(x) = E_{d'}[f(x)\frac{d(x)}{d'(x)}]$$

- This leads to the *importance sampling estimator*:

$$E_d[f(x)] \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i)\frac{d(x)}{d'(x)}$$

- In our case: target distribution comes from estimation policy; source distribution from behaviour policy.

- We are estimating $V^\pi(s)$ from π' (which is a distribution over actions given a state).
Off-policy Monte-Carlo control

- Given n_s returns $R_i(s)$ from state s with probability $p_i(s)$ and $p'_i(s)$ of being generated by π and π':

$$V^\pi(s) \approx \frac{\sum_{i=1}^{n_s} \frac{p_i(s)}{p'_i(s)} R_i(s)}{\sum_{i=1}^{n_s} \frac{p_i(s)}{p'_i(s)}}$$

- $p_i(s)$ and $p'_i(s)$ are unknown but:

$$\frac{p_i(s)}{p'_i(s)} = \frac{\prod_{k=t}^{T_i(s)-1} \pi(s_k, a_k) P_{s_k s_{k+1}}^{a_k}}{\prod_{k=t}^{T_i(s)-1} \pi'(s_k, a_k) P_{s_k s_{k+1}}^{a_k}} = \prod_{k=t}^{T_i(s)-1} \frac{\pi(s_k, a_k)}{\pi'(s_k, a_k)}$$
Off-policy Monte-Carlo control

Initialize, for all $s \in S$, $a \in A(s)$:
\[
Q(s, a) \leftarrow \text{arbitrary}
\]
\[
N(s, a) \leftarrow 0 \quad ; \quad \text{Numerator and}
\]
\[
D(s, a) \leftarrow 0 \quad ; \quad \text{Denominator of } Q(s, a)
\]
\[
\pi \leftarrow \text{an arbitrary deterministic policy}
\]

Repeat forever:

(a) Select a policy π' and use it to generate an episode:
\[
s_0, a_0, r_1, s_1, a_1, r_2, \ldots, s_{T-1}, a_{T-1}, r_T, s_T
\]
(b) $\tau \leftarrow$ latest time at which $a_\tau \neq \pi(s_\tau)$
(c) For each pair s, a appearing in the episode at time τ or later:
\[
t \leftarrow \text{the time of first occurrence of } s, a \text{ such that } t \geq \tau
\]
\[
w \leftarrow \prod_{k=t+1}^{T-1} \frac{1}{\pi'(s_k, a_k)}
\]
\[
N(s, a) \leftarrow N(s, a) + wR_t
\]
\[
D(s, a) \leftarrow D(s, a) + w
\]
\[
Q(s, a) \leftarrow \frac{N(s, a)}{D(s, a)}
\]
(d) For each $s \in S$:
\[
\pi(s) \leftarrow \arg \max_a Q(s, a)
\]
Incremental implementation

Monte-Carlo methods can process each return incrementally:

\[V_{n+1} = V_n + \frac{w_{n+1}}{W_{n+1}} [R_{n+1} - V_n] \]

where:

\[w_{n+1} = \frac{p_{n+1}(s)}{p'_{n+1}(s)} \]

and:

\[W_{n+1} = W_n + w_{n+1} \]
Let’s take a step back from RL, and have a look at Monte-Carlo methods for planning.
Monte Carlo Tree Search

- One of the most successful AI algorithms
- The first reasonably good AI go players (2006)
- AlphaGo beats world top Go players (2016)
- Combination of:
 - Tree Search
 - Monte Carlo roll-outs
 - Exploration heuristics (upper confidence bounds)

Monte Carlo Tree Search: other successes

- General Video Game playing
- http://www.gvgai.net/ — The General Video Game AI Competition
- Partially observable MDP planning (POMCP)
- Multi-agent planning (even partially observable)
- Bayesian Reinforcement learning

Monte Carlo Tree Search: overview

Figure: assumes deterministic transitions, for convenience. (What would be different for stochastic transitions?)
Monte Carlo Tree Search: overview

- Find expandable state-node (i.e., not all actions have been tried yet)
- Select action to try
- Selection strategy: e.g., UCT (based on bandit literature), game-specific (e.g., crazy stone for Go).
- Observe next state and add to tree as node
- From that node, do random roll-out(s)
- Backup the expected return through the tree