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About the course

Lectures: Mondays, 2pm

I From now until Christmas, and from February onwards

Grading

I Small assignments: 10%

I Research project: 50%

I Test: 40%
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Note

These lectures are based on:

I Sutton and Barto

I Papers

I Some of our own work

Images from http://www.irasutoya.com, Sutton and Barto’s book, and my PhD thesis.
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Planning and learning

Agents

How should a single rational agent interact with a sequential decision
process to maximise its expected long-term cumulative reward
with/without an a priori model of its environment?

With a model: planning

Without a model: reinforcement learning
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Why planning and learning?

It’s hot!

It’s cool!

It’s really really useful!
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Movie time

... en dan nu, een filmpje!
... and now, a clip!
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What is an agent?

D.M. Roijers (VUB) Intro RL Fall, 2017 7 / 46



What is an agent?

D.M. Roijers (VUB) Intro RL Fall, 2017 8 / 46



What is an agent?
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What is an agent?

An agent is “anything that can be viewed as perceiving its
environment through sensors and acting upon that environment
through effectors” (Russel and Norvig)

An artificial agent typically is a computer program
I possibly embedded in specific hardware
I takes actions in an environment that changes as a result of these

actions.

An autonomous agent (Franklin and Graesser, 1996)
I can act autonomously,
I on a user’s behalf
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Intelligent Autonomous Agents

Intelligent Autonomous Agents that

I reason about their environment

I reason about consequences of actions (desirability)

Decision theory
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Environments

States

Actions

State transitions

Rewards

Sequential

Single-agent

Fully observable
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Other models
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Movie time

... en dan nu, een filmpje!
... and now, a clip!
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Markov decision processes

Formalisation of a single-agent, sequential, discrete-time, stationary
environment, Markovian-observation-signal, decision problem.

Sequential: multiple decisions over time.

Discrete time steps: one action and state-transition per timestep

Stationary environment: the state of the environment may change,
but the dynamics do not.

D.M. Roijers (VUB) Intro RL Fall, 2017 15 / 46



Markov decision processes

Named after Andrey Markov (1856–1922).

A finite MDP consists of:
I Discrete time t = 0, 1, 2, . . .
I A discrete set of states s ∈ S
I A discrete set of actions a ∈ A(s) for each s
I A transition function Pa

ss′ = p(s ′|s, a): probability of transitioning to
state s ′ when taking action a at state s

I A reward function Ra
ss′ = E [r |s, a, s ′]: expected reward when taking

action a at state s and transitioning to s ′

I A planning horizon h or discount factor γ
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A tiny (6-state) MDP
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The Markov property

p(st+1, rt+1|st , at) = p(st+1, rt+1|st , at , rt , st−1, at−1, . . . , r1, s0, a0)

Therefore, the history does not yield more information about
subsequent states and rewards than the current state.

Current state is a sufficient statistic for the history.

A Markovian/Markov state/observation signal

Important: only need to condition on the latest observation (st)
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Markov?
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Markov?
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Can we make it Markov?
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The credit-assignment problem

Sequential aspect → credit assignment problem

Suppose an agent takes a long sequence of actions, at the end of
which it receives a single positive reward?

How can it determine to what degree each action in that sequence
deserves the credit for the reward?
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Return

The agent’s goal is to maximise the expected return, the sum over
the rewards received.

Three settings:

I Finite-horizon

I Infinite-horizon continuing

I Infinite-horizon episodic
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Return: finite-horizon

In a finite-horizon task, the return is defined as:

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
h∑

k=0

γk rt+k+1

0 ≤ γ ≤ 1; can be 1 only in a finite-horizon setting!
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Return: infinite-horizon continuing

In an infinite-horizon task, the return is defined as:

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑
k=0

γk rt+k+1

0 ≤ γ < 1

It never stops

D.M. Roijers (VUB) Intro RL Fall, 2017 26 / 46



Return: infinite-horizon episodic

In an infinite-horizon task, the return is defined as:

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑
k=0

γk rt+k+1

0 ≤ γ < 1

When the agent reaches a terminal state, it stops

Return after reaching a terminal state (i.e., all rewards) is 0 by
definition.

Terminal state is an absorbing state:
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Value functions

The state-value function of a policy π is:

V π(s) = Eπ
[
Rt |st = s

]
= Eπ

[ ∞∑
k=0

γk rt+k+1|st = s
]

The stateless value function of a policy π is:

V π = Eπ
[
Rt |µ0

]
= Eπ

[ ∞∑
k=0

γk rt+k+1|µ0
]

where µ0 is a distribution over initial states.

The state-action-value of a policy π is:

Qπ(s, a) = Eπ
[
Rt |st = s, at = a

]
= Eπ

[ ∞∑
k=0

γk rt+k+1|st = s, at = a
]
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A tiny (6-state) MDP
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Bellman equation

The definition of V π can be rewritten recursively by making use of
the transition model, yielding the Bellman equation:

V π(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′

[
Ra
ss′ + γV π(s ′)

]
This is a set of linear equations, one for each state, the solution of
which defines the value of π

A similar recursive definition holds for Q-values:

Qπ(s, a) =
∑
s′

Pa
ss′

[
Ra
ss′ + γ

∑
a′

π(s ′, a′)Q(s ′, a′)
]

Equations named after Richard E. Bellman (1920–1984).
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A tiny (6-state) MDP
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Bellman optimality equations

V ∗ = max
a∈A

∑
s′

Pa
ss′

[
Ra
ss′ + γV ∗(s ′)

]
Q∗(s, a) =

∑
s′

Pa
ss′

[
Ra
ss′ + γ max

a ∈A
Q∗(s ′, a′)

]
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Why optimal value functions are useful

An optimal policy is greedy with respect to V ∗ or Q∗:

π∗(s) ∈ arg max
a

Q∗(s, a) = arg max
a

[
Ra
ss′ + γ

∑
s′

Pa
ss′V

∗(s ′)
]
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Movie time

... en dan nu, een filmpje!
... and now, a clip!
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Planning

Given an MDP, find V ∗(s)/Q∗(s, a) and π∗

Q∗(s, a) =
∑
s′

Pa
ss′

[
Ra
ss′ + γ max

a ∈A
Q∗(s ′, a′)

]
π∗(s) ∈ arg max

a
Q∗(s, a) = arg max

a

[
Ra
ss′ + γ

∑
s′

Pa
ss′V

∗(s ′)
]

Howard (1960): for any additive infinite-horizon MDP, there exists at
least one deterministic stationary policy that is optimal.

π : S → A

Why does Howard’s theorem not hold for finite-horizon problems?
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How? A dynamic programming approach!
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How? A dynamic programming approach!

Iteratively improve

I the value estimates

I the (deterministic stationary) policy

Until convergence
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Policy evaluation

Exploit the recursive nature of the Bellman equation

Initial value function V0(s) is chosen arbitrarily (e.g., 0 for every s)

Turn Bellman equation into Policy evaluation update update rule:

Vk+1(s)←
∑
a

π(s, a)
∑
s′

Pa
ss′

[
Ra
ss′ + γVk(s ′)

]
Apply to every state in each iteration

Iterate until fixed point limk→∞ ∀s : Vk(s) = Vk+1(s)
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Policy evaluation

Proven to converge

limk→∞ ∀s : Vk(s) = Vk+1(s) = V π(s)

Upper bound on complexity O(|S |3)?

?M.L. Littman, T.L. Dean, L.P. Kaelbling — On the complexity of solving Markov
decision problems, UAI, 1995
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Policy improvement

Find improvable states: s where is a better action a 6= π(s)

Qπ(s, a) =
∑
s′

Pa
ss′

[
Ra
ss′ + γV π(s ′)

]
> V π(s)?

Policy improvement theorem: changing π to take a better action
(according to above equation) in one or more improvable states will
increase its value:

∀s ∈ S : Qπ(s, π′(s)) ≥ V π(s)⇒ ∀s ∈ S ,V π′
(s) ≥ V π(s)

Why does this always converge?
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Policy improvement illustration
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Policy improvement illustration
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Policy iteration
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Policy iteration

Begin with arbitrary policy

Repeat:

I Policy evaluation (PE) (until convergence)

I Policy improvement (PI) (on one or more states)

PI

I On all improvable states → Howard’s (1960) policy iteration

I On one improvable state → Simple policy iteration

I Mansour and Singh’s (1999) Randomised PI

I (Recursive) Batch-switching PI [Kalyanakrishnan, Mall, and Goyal
(2016), Gupta and Kalyanakrishnan (2017)]

I In practice, Howard’s PI seems to be most effective
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Value iteration

We do not have to wait for policy evaluation to complete improving
the policy

Value iteration (VI) integrates evaluation and improvement in one
update rule:

Vk+1(s)← max
a

∑
s′

Pa
ss′

[
Ra
ss′ + γVk(s ′)

]
This can also be written:

Vk+1(s)← max
a

Qk+1(s, a),

Qk+1(s, a)←
∑
s′

Pa
ss′

[
Ra
ss′ + γVk(s ′)

]
Guaranteed to converge to V ∗(s) and π∗
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A tiny (6-state) MDP
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Efficiency of dynamic programming

An MDP has |A||S | deterministic stationary policies

Worst-case computational complexity of DP is polynomial in

|S |, |A|, and 1
1−γ log

(
1

1−γ

)
?

MDP planning can also be done with linear programming

I Better runtime guarantees, but impractical for large MDPs

?M.L. Littman, T.L. Dean, L.P. Kaelbling — On the complexity of solving Markov
decision problems, UAI, 1995,
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