Introduction to Markov Decision Processes

Lecturers: Diederik M. Roijers & Ann Nowé

TA: Denis Steckelmacher

AI laboratory Vrije Universiteit Brussel

Fall, 2017

About the course

- Lectures: Mondays, 2pm
 - From now until Christmas, and from February onwards
- Grading
 - Small assignments: 10%
 - Research project: 50%
 - ► Test: 40%

Note

- These lectures are based on:
 - Sutton and Barto
 - Papers
 - Some of our own work

Images from http://www.irasutoya.com, Sutton and Barto's book, and my PhD thesis.

Planning and learning

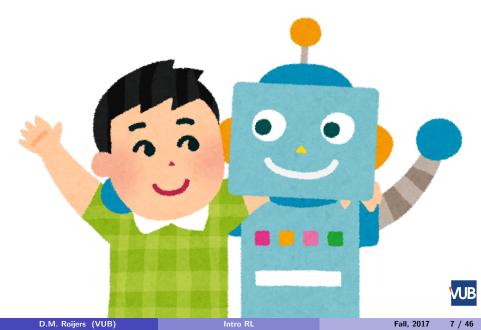
- Agents
- How should a single rational agent interact with a sequential decision process to maximise its expected long-term cumulative reward with/without an a priori model of its environment?
- With a model: *planning*
- Without a model: reinforcement learning

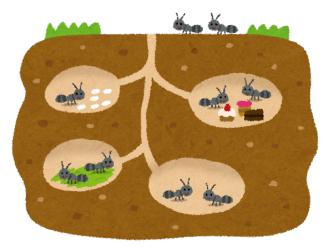
Why planning and learning?

- It's hot!
- It's cool!
- It's really really useful!

Movie time

... en dan nu, een filmpje! ... and now, a clip!





- An agent is "anything that can be viewed as perceiving its environment through sensors and acting upon that environment through effectors" (Russel and Norvig)
- An artificial agent typically is a computer program
 - possibly embedded in specific hardware
 - takes actions in an environment that changes as a result of these actions.
- An autonomous agent (Franklin and Graesser, 1996)
 - can act autonomously,
 - on a user's behalf

Intelligent Autonomous Agents

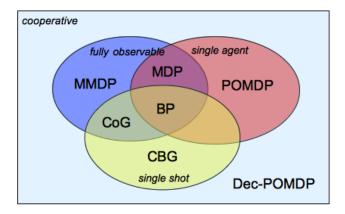
- Intelligent Autonomous Agents that
 - reason about their environment
 - reason about consequences of actions (desirability)
- Decision theory

Environments

- States
- Actions
- State transitions
- Rewards

- Sequential
- Single-agent
- Fully observable

Other models



Movie time

... en dan nu, een filmpje! ... and now, a clip!

Markov decision processes

- Formalisation of a single-agent, sequential, discrete-time, stationary environment, Markovian-observation-signal, decision problem.
- Sequential: multiple decisions over time.
- Discrete time steps: one action and state-transition per timestep
- Stationary environment: the state of the environment may change, but the dynamics do not.

Markov decision processes

• Named after Andrey Markov (1856–1922).

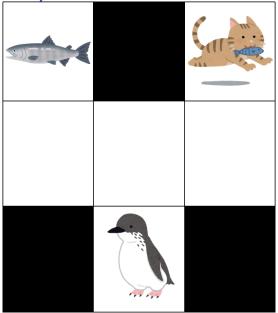
- A finite MDP consists of:
 - ▶ Discrete time t = 0, 1, 2, ...
 - A discrete set of states $s \in S$
 - A discrete set of actions $a \in A(s)$ for each s
 - A transition function P^a_{ss'} = p(s'|s, a): probability of transitioning to state s' when taking action a at state s
 - ► A reward function R^a_{ss'} = E[r|s, a, s']: expected reward when taking action a at state s and transitioning to s'
 - A planning horizon h or discount factor γ

Markov decision processes

• Named after Andrey Markov (1856–1922).

- A finite MDP consists of:
 - ▶ Discrete time t = 0, 1, 2, ...
 - A discrete set of states $s \in S$
 - A discrete set of actions $a \in A(s)$ for each s
 - A transition function T(s, a, s') = p(s'|s, a): probability of transitioning to state s' when taking action a at state s
 - A reward function R(s, a, s') = E[r|s, a, s']: expected reward when taking action a at state s and transitioning to s'
 - A planning horizon h or discount factor γ

A tiny (6-state) MDP

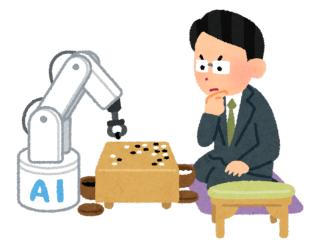


The Markov property

 $p(s_{t+1}, r_{t+1}|s_t, a_t) = p(s_{t+1}, r_{t+1}|s_t, a_t, r_t, s_{t-1}, a_{t-1}, \dots, r_1, s_0, a_0)$

- Therefore, the history does not yield more information about subsequent states and rewards than the current state.
- Current state is a sufficient statistic for the history.
- A Markovian/Markov state/observation signal
- Important: only need to condition on the latest observation (s_t)

Markov?



Markov?

Can we make it Markov?

The credit-assignment problem

• Sequential aspect \rightarrow credit assignment problem

• Suppose an agent takes a long sequence of actions, at the end of which it receives a single positive reward?

• How can it determine to what degree each action in that sequence deserves the *credit* for the reward?

Return

- The agent's goal is to maximise the expected *return*, the sum over the rewards received.
- Three settings:
 - Finite-horizon
 - Infinite-horizon continuing
 - Infinite-horizon episodic

Return: finite-horizon

• In a finite-horizon task, the return is defined as:

$$R_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \ldots = \sum_{k=0}^{h} \gamma^{k} r_{t+k+1}$$

• $0 \le \gamma \le 1$; can be 1 only in a finite-horizon setting!

Return: infinite-horizon continuing

• In an infinite-horizon task, the return is defined as:

$$R_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \ldots = \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1}$$

- $0 \le \gamma < 1$
- It never stops

Return: infinite-horizon episodic

• In an infinite-horizon task, the return is defined as:

$$R_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \ldots = \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1}$$

• $0 \leq \gamma < 1$

- When the agent reaches a terminal state, it stops
- Return after reaching a terminal state (i.e., all rewards) is 0 by definition.

• Terminal state is an *absorbing state*:

$$\underbrace{s_0}_{r_1=+1} \underbrace{r_2=+1}_{s_1} \underbrace{s_2}_{r_3=+1} \underbrace{r_3=+1}_{r_5=0} \underbrace{r_4=0}_{r_5=0}$$

Value functions

• The *state-value function* of a policy π is:

$$V^{\pi}(s) = E_{\pi}\left[R_t|s_t=s\right] = E_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}|s_t=s\right]$$

• The *stateless value function* of a policy π is:

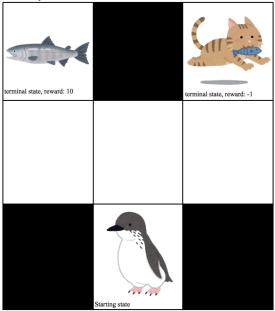
$$V^{\pi} = E_{\pi} \Big[R_t | \mu_0 \Big] = E_{\pi} \Big[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | \mu_0 \Big]$$

where μ_0 is a distribution over initial states.

• The *state-action-value* of a policy π is:

$$Q^{\pi}(s,a) = E_{\pi} \Big[R_t | s_t = s, a_t = a \Big] = E_{\pi} \Big[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s, a_t = a \Big]$$

A tiny (6-state) MDP



D.M. Roijers (VUB)

Bellman equation

 The definition of V^π can be rewritten recursively by making use of the transition model, yielding the *Bellman equation*:

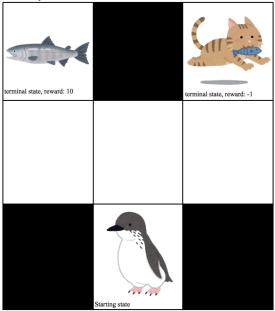
$$V^{\pi}(s) = \sum_{a} \pi(s, a) \sum_{s'} P^{a}_{ss'} \Big[R^{a}_{ss'} + \gamma V^{\pi}(s') \Big]$$

- $\bullet\,$ This is a set of linear equations, one for each state, the solution of which defines the value of $\pi\,$
- A similar recursive definition holds for Q-values:

$$Q^{\pi}(s,a) = \sum_{s'} P^{a}_{ss'} \Big[R^{a}_{ss'} + \gamma \sum_{a'} \pi(s',a') Q(s',a') \Big]$$

• Equations named after Richard E. Bellman (1920–1984).

A tiny (6-state) MDP



D.M. Roijers (VUB)

Bellman optimality equations

$$V^* = \max_{a \in A} \sum_{s'} P^a_{ss'} \left[R^a_{ss'} + \gamma V^*(s') \right]$$
$$Q^*(s, a) = \sum_{s'} P^a_{ss'} \left[R^a_{ss'} + \gamma \max_{a \in A} Q^*(s', a') \right]$$

Why optimal value functions are useful

An optimal policy is greedy with respect to V^* or Q^* :

$$\pi^*(s) \in \arg\max_{a} Q^*(s, a) = \arg\max_{a} \left[R^a_{ss'} + \gamma \sum_{s'} P^a_{ss'} V^*(s') \right]$$

Movie time

... en dan nu, een filmpje! ... and now, a clip!

Planning

• Given an MDP, find $V^*(s)/Q^*(s,a)$ and π^*

$$Q^*(s, a) = \sum_{s'} P^a_{ss'} \Big[R^a_{ss'} + \gamma \max_{a \in A} Q^*(s', a') \Big]$$
$$\pi^*(s) \in \arg\max_{a} Q^*(s, a) = \arg\max_{a} \Big[R^a_{ss'} + \gamma \sum_{s'} P^a_{ss'} V^*(s') \Big]$$

• Howard (1960): for any additive infinite-horizon MDP, there exists at least one deterministic stationary policy that is optimal.

• $\pi: S \to A$

Planning

• Given an MDP, find $V^*(s)/Q^*(s,a)$ and π^*

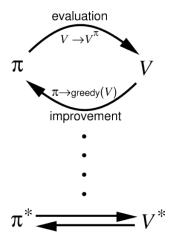
$$Q^*(s, a) = \sum_{s'} P^a_{ss'} \Big[R^a_{ss'} + \gamma \max_{a \in A} Q^*(s', a') \Big]$$
$$\pi^*(s) \in \arg\max_a Q^*(s, a) = \arg\max_a \Big[R^a_{ss'} + \gamma \sum_{s'} P^a_{ss'} V^*(s') \Big]$$

• Howard (1960): for any additive infinite-horizon MDP, there exists at least one deterministic stationary policy that is optimal.

• $\pi: S \to A$

• Why does Howard's theorem not hold for finite-horizon problems?

How? A dynamic programming approach!



How? A dynamic programming approach!

- Iteratively improve
 - the value estimates
 - the (deterministic stationary) policy
- Until convergence

Policy evaluation

- Exploit the recursive nature of the Bellman equation
- Initial value function $V_0(s)$ is chosen arbitrarily (e.g., 0 for every s)
- Turn Bellman equation into Policy evaluation update update rule:

$$V_{k+1}(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} P^{a}_{ss'} \Big[R^{a}_{ss'} + \gamma V_{k}(s') \Big]$$

- Apply to every state in each iteration
- Iterate until fixed point $\lim_{k \to \infty} \forall s : V_k(s) = V_{k+1}(s)$

Policy evaluation

Proven to converge

•
$$\lim_{k\to\infty} \forall s : V_k(s) = V_{k+1}(s) = V^{\pi}(s)$$

• Upper bound on complexity $O(|S|^3)^*$

*M.L. Littman, T.L. Dean, L.P. Kaelbling — On the complexity of solving Markov UB decision problems, UAI, 1995

D.M. Roijers (VUB)

Policy improvement

• Find *improvable states*: s where is a better action $a \neq \pi(s)$

$$Q^{\pi}(s,a) = \sum_{s'} P^{a}_{ss'} \Big[R^{a}_{ss'} + \gamma V^{\pi}(s') \Big] > V^{\pi}(s)?$$

 Policy improvement theorem: changing π to take a better action (according to above equation) in one or more improvable states will increase its value:

$$orall s \in S: Q^{\pi}(s,\pi'(s)) \geq V^{\pi}(s) \Rightarrow orall s \in S, V^{\pi'}(s) \geq V^{\pi}(s)$$

• Why does this always converge?

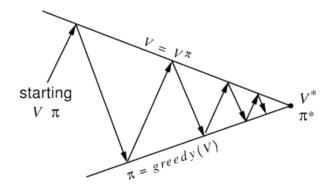
Policy improvement illustration

					a₁			
		a₂			a₂			
6	a₁	a ₃		a ₂	a₃		a ₂	
/alue	a ₂	a₅		a₄	a₅		a ₃	a₃
Q(s,a') value	a ₃	a4	a ₁	a₁	a4	a₅	a₅	a ₂
Q(s	a_4	a₁	a ₂	a ₃		a ₁	a₁	a ₁
1	a ₅		a ₃	a₅		a ₂	a_4	a ₄
			a₄			a ₃		a₅
			a₅			a4		

Policy improvement illustration

					a₁			
		a₂			a₂			
0	a₁	a ₃		a ₂	a ₃		a ₂	
alue	a_2	a₅		a₄	a₅		a ₃	a ₃
Q(s,a') value	a ₃	a4	a ₁	a₁	a4	<mark>a₅</mark>	a₅	a 2
	a4	a₁	a ₂	a ₃		a ₁	a ₁	a1
↑ [a ₅		a₃	a₅		a₂	a₄	a4
		-	a₄			a ₃		a ₅
			a₅			a4		

Policy iteration



Policy iteration

- Begin with arbitrary policy
- Repeat:
 - Policy evaluation (PE) (until convergence)
 - Policy improvement (PI) (on one or more states)

PI

- On all improvable states ightarrow Howard's (1960) policy iteration
- On one improvable state \rightarrow Simple policy iteration
- Mansour and Singh's (1999) Randomised PI
- (Recursive) Batch-switching PI [Kalyanakrishnan, Mall, and Goyal (2016), Gupta and Kalyanakrishnan (2017)]

Policy iteration

- Begin with arbitrary policy
- Repeat:
 - Policy evaluation (PE) (until convergence)
 - Policy improvement (PI) (on one or more states)

PI

- On all improvable states ightarrow Howard's (1960) policy iteration
- On one improvable state \rightarrow Simple policy iteration
- Mansour and Singh's (1999) Randomised PI
- (Recursive) Batch-switching PI [Kalyanakrishnan, Mall, and Goyal (2016), Gupta and Kalyanakrishnan (2017)]
- In practice, Howard's PI seems to be most effective

Value iteration

- We do not have to wait for policy evaluation to complete improving the policy
- Value iteration (VI) integrates evaluation and improvement in one update rule:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P^{a}_{ss'} \Big[R^{a}_{ss'} + \gamma V_{k}(s') \Big]$$

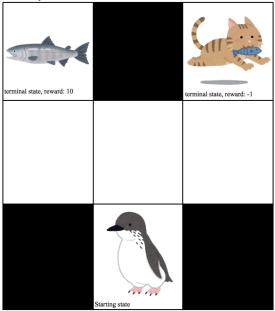
• This can also be written:

$$V_{k+1}(s) \leftarrow \max_{a} Q_{k+1}(s, a),$$

 $Q_{k+1}(s, a) \leftarrow \sum_{s'} P^a_{ss'} \Big[R^a_{ss'} + \gamma V_k(s') \Big]$

• Guaranteed to converge to $V^*(s)$ and π^*

A tiny (6-state) MDP



D.M. Roijers (VUB)

Efficiency of dynamic programming

- An MDP has $|A|^{|S|}$ deterministic stationary policies
- Worst-case computational complexity of DP is polynomial in |S|, |A|, and $\frac{1}{1-\gamma} \log \left(\frac{1}{1-\gamma}\right)^*$
- MDP planning can also be done with *linear programming*
 - Better runtime guarantees, but impractical for large MDPs

*M.L. Littman, T.L. Dean, L.P. Kaelbling — On the complexity of solving Markov UB decision problems, UAI, 1995,

D.M. Roijers (VUB)