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About the course

@ Lectures: Mondays, 2pm

» From now until Christmas, and from February onwards

o Grading

» Small assignments: 10%
» Research project: 50%

> Test: 40%
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Note

@ These lectures are based on:
» Sutton and Barto
» Papers

» Some of our own work

Images from http://www.irasutoya.com, Sutton and Barto’s book, and my PhD thesis.
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Planning and learning

@ Agents

@ How should a single rational agent interact with a sequential decision
process to maximise its expected long-term cumulative reward
with /without an a priori model of its environment?

@ With a model: planning

o Without a model: reinforcement learning
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Why planning and learning?

@ It's hot!
o It's cooll

@ It's really really useful!
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Movie time
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What is an agent?
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What is an agent?

X

o x*
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What is an agent?
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What is an agent?

@ An agent is “anything that can be viewed as perceiving its
environment through sensors and acting upon that environment
through effectors” (Russel and Norvig)

@ An artificial agent typically is a computer program

» possibly embedded in specific hardware
> takes actions in an environment that changes as a result of these
actions.

@ An autonomous agent (Franklin and Graesser, 1996)

» can act autonomously,
» on a user's behalf
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Intelligent Autonomous Agents

@ Intelligent Autonomous Agents that

» reason about their environment

» reason about consequences of actions (desirability)

@ Decision theory
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Environments

@ States
@ Actions
@ State transitions

@ Rewards

@ Sequential
@ Single-agent

o Fully observable
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Other models

cooperative

S Dec-POMDP
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Markov decision processes

Formalisation of a single-agent, sequential, discrete-time, stationary
environment, Markovian-observation-signal, decision problem.

Sequential: multiple decisions over time.

Discrete time steps: one action and state-transition per timestep

Stationary environment: the state of the environment may change,
but the dynamics do not.
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Markov decision processes

o Named after Andrey Markov (1856-1922).

@ A finite MDP consists of:

» Discrete time t =0,1,2,...

> A discrete set of statess € S

» A discrete set of actions a € A(s) for each s

» A transition function P2, = p(s’|s, a): probability of transitioning to
state s’ when taking action a at state s
A reward function RZ, = E[r|s, a,s’]: expected reward when taking
action a at state s and transitioning to s’

A planning horizon h or discount factor

\4

v
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Markov decision processes

o Named after Andrey Markov (1856-1922).

@ A finite MDP consists of:

» Discrete time t =0,1,2,...

> A discrete set of statess € S

» A discrete set of actions a € A(s) for each s

» A transition function T(s,a,s’) = p(s’|s, a): probability of
transitioning to state s’ when taking action a at state s

» A reward function R(s, a,s’) = E[rls, a,s’]: expected reward when
taking action a at state s and transitioning to s’

» A planning horizon h or discount factor ~
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A tiny (6-state) MDP

‘m
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The Markov property

p(st+17 rt+1‘5t7 at) - p(5t+17 re4+1|St, de, ey St—1,dt—1,- -+, 11, 50, 30)

@ Therefore, the history does not yield more information about
subsequent states and rewards than the current state.

o Current state is a sufficient statistic for the history.
@ A Markovian/Markov state/observation signal
@ Important: only need to condition on the latest observation (s;)
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Markov?
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Markov?
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Can we make it Markov?




The credit-assignment problem

@ Sequential aspect — credit assignment problem

@ Suppose an agent takes a long sequence of actions, at the end of
which it receives a single positive reward?

@ How can it determine to what degree each action in that sequence
deserves the credit for the reward?
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Return

@ The agent's goal is to maximise the expected return, the sum over
the rewards received.

@ Three settings:
> Finite-horizon
» Infinite-horizon continuing

> Infinite-horizon episodic
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Return: finite-horizon

@ In a finite-horizon task, the return is defined as:

h
R, = 2 _ k
t =yl T Y2 Y 3+ = Y ttk41
k=0

@ 0 <~v<1;can be 1l onlyin a finite-horizon setting!
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Return: infinite-horizon continuing

@ In an infinite-horizon task, the return is defined as:

o0
2 K
Re=rip1+yre2 +9reg3+... = E Y k41
k=0

e 0<y«l1

@ It never stops
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Return: infinite-horizon episodic

@ In an infinite-horizon task, the return is defined as:
o0
2 k
Re=r1+yre2+7res+...= 27 M4 k41
k=0

e 0<y«l1
@ When the agent reaches a terminal state, it stops

@ Return after reaching a terminal state (i.e., all rewards) is 0 by
definition.

@ Terminal state is an absorbing state:
r|:+l r2:+l r3:+l
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Value functions

@ The state-value function of a policy 7 is:

V7 (s) = E; [Rt|st = s} =E, [iykrt+k+1|st = s}
k=0

@ The stateless value function of a policy 7 is:
o0
V™ = Ec[Reluo] = Ex| 37 resksalio]
k=0

where g is a distribution over initial states.

@ The state-action-value of a policy 7 is:

Q"(s,a) = E, [Rf\st =s,a = a} =E, [Z’ykmkﬂ St =S,ar = a‘m

k=0
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A tiny (6-state) MDP

*
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terminal state, reward: 10 terminal state, reward: -1

S ‘m
Starting state
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Bellman equation

@ The definition of V™ can be rewritten recursively by making use of
the transition model, yielding the Bellman equation:

V() = > w(s,8) Y Pa | Ra +V7(s)

a

@ This is a set of linear equations, one for each state, the solution of
which defines the value of 7

@ A similar recursive definition holds for Q-values:
Q7(s.a) = Y P |Rey +7)_ (s, )Q(s, )]
s/ a

@ Equations named after Richard E. Bellman (1920-1984).
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A tiny (6-state) MDP
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Bellman optimality equations

Ve =maxy P {R;;, + 7V*(s')]
Sl

Q*(s, a) = Zs: - [R;’s/ +ymax Q7(s", a’)}
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Why optimal value functions are useful

An optimal policy is greedy with respect to V* or Q*:

7*(s) € argmax Q*(s, a) = arg max [R;’s, + Z P2, V*(s’)}
a a "

S
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Planning

@ Given an MDP, find V*(s)/Q*(s, a) and 7*
Z ss,[ oo -I-’ymaxQ*(s a )]
*(s) € arg maxQ (s,a) = arg max [Rss, +’yz o (5')]

@ Howard (1960): for any additive infinite-horizon MDP, there exists at
least one deterministic stationary policy that is optimal.

emT:S— A
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Planning

@ Given an MDP, find V*(s)/Q*(s, a) and 7*

> % R+ ymax @7(s'. )

w*(s) € arg max Q*(s,a) = arg max [Rss, + ’yz oy (5')]

@ Howard (1960): for any additive infinite-horizon MDP, there exists at
least one deterministic stationary policy that is optimal.

eT:S— A

@ Why does Howard's theorem not hold for finite-horizon problems?
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How? A dynamic programming approach!

evaluation

vV ov'

T Vv
T—greedy(V)

improvement
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How? A dynamic programming approach!

@ lteratively improve

» the value estimates

» the (deterministic stationary) policy

@ Until convergence
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Policy evaluation

Exploit the recursive nature of the Bellman equation

Initial value function Vg(s) is chosen arbitrarily (e.g., 0 for every s)

Turn Bellman equation into Policy evaluation update update rule:

Viga(s) « Y n(s.a) > P2 [Rj’s, FAVi(s)
a s/

Apply to every state in each iteration

Iterate until fixed point limg_ o Vs : Vi(s) = Vir1(s)
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Policy evaluation

@ Proven to converge
(] |imk_>ooVSZ Vk(s) = Vk+1(5) = VW(S)

@ Upper bound on complexity O(|S|3)*

*M.L. Littman, T.L. Dean, L.P. Kaelbling — On the complexity of solving Markoxm
decision problems, UAI, 1995
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Policy improvement

e Find improvable states: s where is a better action a # 7(s)

Q"(s5,3) = Y P |R% + V(5] > V(5)?

@ Policy improvement theorem: changing m to take a better action
(according to above equation) in one or more improvable states will
increase its value:

VseS:Q (s, m(s)) > V™(s) = Vs €S, V™ (s) > V™(s)

@ Why does this always converge?
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Policy improvement illustration
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Policy improvement illustration
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Policy iteration

starting
Vo
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Policy iteration
@ Begin with arbitrary policy

@ Repeat:

» Policy evaluation (PE) (until convergence)

» Policy improvement (PI) (on one or more states)

o PI

» On all improvable states — Howard's (1960) policy iteration
» On one improvable state — Simple policy iteration
» Mansour and Singh's (1999) Randomised Pl

> (Recursive) Batch-switching Pl [Kalyanakrishnan, Mall, and Goyal
(2016), Gupta and Kalyanakrishnan (2017)]
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Policy iteration
@ Begin with arbitrary policy

@ Repeat:

» Policy evaluation (PE) (until convergence)

» Policy improvement (PI) (on one or more states)

o PI

» On all improvable states — Howard's (1960) policy iteration
» On one improvable state — Simple policy iteration
» Mansour and Singh's (1999) Randomised Pl

> (Recursive) Batch-switching Pl [Kalyanakrishnan, Mall, and Goyal
(2016), Gupta and Kalyanakrishnan (2017)]

> In practice, Howard's Pl seems to be most effective m
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Value iteration

@ We do not have to wait for policy evaluation to complete improving
the policy

@ Value iteration (VI) integrates evaluation and improvement in one
update rule:

Vi1(s) « maXZ ss’|: Ry + v Vi(s )]

@ This can also be written:
Vier1(s) = max Qi1 (s, ),
Qk-‘rl S a — Z ss’|: ss’ +7Vk( )
o Guaranteed to converge to V*(s) and 7* m
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A tiny (6-state) MDP
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Efficiency of dynamic programming

@ An MDP has |A|!S! deterministic stationary policies

@ Worst-case computational complexity of DP is polynomial in
1 1
S|, |Al, and 1 log (E>*

@ MDP planning can also be done with linear programming

> Better runtime guarantees, but impractical for large MDPs

*M.L. Littman, T.L. Dean, L.P. Kaelbling — On the complexity of solving Markom
decision problems, UAI, 1995,
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